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Background

6G-driven Location-Aware intelligent applications:

• Robotic navigation; Autonomous parcel sorting;

• UAV-based delivery;

• UE location and orientation are critical parameters.



Background

• Integrated Communication and Sensing, ICAS -> promising solutions

• Demand: 6G-driven apps requires comm + sensing.

• Supply: software and hardware of C&S are compatible. 



Background

Conventional UE localization solutions:

• WiFi-based localization solution: no angular resolution.

• GPS: not accessible for indoor applications.

• Radar: subject to environment.



Background

• Matrix view of conventional localization solutions



Background

VLC integrated with localization:

• Low-cost: localization during indoor illumination.

• High angular resolution due to large free band.

• Simultaneous Communication and Localization

J. Armstrong, Y. A. Sekercioglu, and A. Neild. Visible light positioning: a roadmap for international standardization. IEEE Communications Magazine 51.12 (2013): 68-73.



Background

Conventional VLP methods

• Signal propagation model-based VLP
• Require perfect knowledge of Lambertian model

• Require perfect alignment of RX and TX orientation angles

• Prior knowledge of VLP systems, e.g., UE orientation angle, height, …

• Channel fading is unresolved

• Fingerprinting-based VLP

• IMU-assisted cooperative VLP

• Deep Learning-based VLP



Background

Great challenge

• Random fading, Multipath interference, 

• Lambertian modeling mismatch

• UD mobility -> Time-varying Doppler fading
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System Model

System setup

• M LEDs with known location                and orientation 

• One mobile UD with a PD array

• UD location                and pose angle                 

• Let                                   be the joint vector. 



System Model

Measurement Model

• The received waveform of visible light follows the lambertian model, which 
is summarized as below (for each tx-rx pair, n-th subcarrier)

• where                             denotes VLC signal propagation function absorbing 
diffuse scattering and channel fading, depending on UD location

• is UD location parameter

• : system parameters, time 
varying due to dynamic environment

• : random measurement noise



System Model

Lambertian Radiation Model

• Signal propagation model 

• Gain of each path

• Known tx OFDM pilot:



System Model

Lambertian Radiation Model

• Gain of LED Transmitters

• Lambertian order

• Response gain of UD’s PD

• Path loss

• Gain of each path



System Model

Lambertian Radiation Model

• Finally, the received OFDM signal waveform

• RSS sample

• All propagation parameters depend on UD location and orientation: 
Transmission delay (tau), radiation angle (theta), incidence angle (phi), 
transmission distance (rho) 
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Robust VLP Method

Problem formulation 

• UD location and pose tracking based on VLC aims to determine UD 
location        from varying samples



Robust VLP Method

Problem formulation 

Technical Challenge: 

• NLOS interference, random fading (and even UD mobility)

• Non-convex problem nature (cost, constraint)

• Large uncertainty set (pose, channel)



Robust VLP Method

Our Solution:

• Lamberation model-based VLP
• LRM calibration-enhanced VLP

• Joint channel estimate with VLP

• Stochastic sampling 

• FG-based VLP: 
• FG interference model optimization-enhanced VLP

• DL-based VLP: 
• Branched ResNet-based VLP;

• BiRCNN-based VLP



（1）Stochastic Searching



（1）Stochastic Searching

Stochastic searching-based VLP

• Generate a set of random particles (location, orientation )

• Global search

• Local detection

• Stochastic update 

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Stochastic searching-based VLP

• Update particle until they converge

• Localization decision 

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

What is different in our solution

• Statistical optimality-guided localization decision

• Robust search (local + global, location + angle rotation)

• Guaranteed convergence 

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Simulation Settings

• SNR=20 dB, 81 LEDs on the ceiling, 9*9*4 space, RSS samples used

• NLOS propagation scenario:

• Baselines

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Simulation results

• Convergence

• RMSE vs SNR

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Simulation results

• RMSE vs UD Location 

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Simulation results

• RMSE vs UD height and polar angle

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Simulation results

• RMSE vs the number of LEDs and NLOS interference

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（1）Stochastic Searching

Conclusion:

• MMSE-guided stochastic searching is used for addressing non-convexity 
challenge.

• Convergence of stochastic searching is ensured, which can hit the global 
optimum almost surely as the number of particles tends to be infinity. 

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and 
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



（2）Channel Estimate-Based VLP



（2）Channel Est-Enhanced VLP

Challenge:

• VLP problem is convex w.r.t. channel state and emitting power.

• SCA-based iteration by exploiting hidden-convex substructure is 
employed for addressing non-convex location estimate.

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE 
Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（2）Channel Est-Enhanced VLP

Solution :

• SCA-guided Iteration between localization and channel estimation

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE 
Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（2）Channel Est-Enhanced VLP

Solution :

• SCA-guided Iteration between localization and channel estimation

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE 
Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（2）Channel Est-Enhanced VLP

Simulation results

• Settings: 20 dB, 20 LEDs on the ceiling, 9*9*4 space

• Using RSS measurements

• NLOS propagation scenario:

• Baselines

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power 
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（2）Channel Est-Enhanced VLP

Simulation results:

• Convergence, and CPU time

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power 
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（2）Channel Est-Enhanced VLP

Simulation results:

• RMSE vs SNR, room size 

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power 
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



（3）Multi-branched ResNet



（3）Multi-branched ResNet

• Intuition : spatial-time texture/correlation structure in RSS sample image.

• 9 PDs and 81 LEDs

• Sample image 

• Texture structure fundamentally 

stems from the signal propagation

and hence depends on UD location

• This texture structure can be used

as feature to derive UD location 
J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

• Motivated by this intuition, we develop a branch-structured RCNN to 
extract texture features and learn its mapping to UD location parameters



（3）Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

• Input: 3D RSS sample images

• Branched residual network, ResNet

• Global average pooling, GAP

• Aggregative perception network, APN

• Output: UD location estimate
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（3）Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

• Input: 3D RSS sample images

• Branched residual network, ResNet

• Global average pooling, GAP

• Aggregative perception network, APN

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

• Input: 3D RSS sample images

• Branched residual network, ResNet

• Global average pooling, GAP

• Aggregative perception network, APN

• Output: UD location estimation

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

• The proposed multi-branch RCNN will behave as parallel pipelines to capture 
environmental-invariant clustering structures from diverse-level sample 
texture features, 

• thus rendering a reliable VLP solution over dynamic environments.

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Procedures: First train and then test

• Training: derive the optimal network parameter with lowest mismatch

• Testing: determine UD location and pose for a given sample, 

using the well-trained branched RCNN. 

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Procedures: First train and then test

• Training: derive the optimal network parameter with lowest mismatch

• Testing: determine UD location and pose for a given sample, 

using the well-trained branched RCNN. 

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Pseudo codes

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Setup:

• A room: 9m × 9m × 4m

• SNR = 20 dB 

• 81 LEDs

• 9 PDs

• RSS samples image

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Branched RCNN configuration



（3）Multi-branched ResNet

Baselines:

• Baseline 1: GCNN-based VLP, which uses Gabor filters for feature extraction.

• Baseline 2: MLP-based VLP, adopting a five-layer fully-connected network.

• Baseline 3: CNN-based VLP, which models the UD localization as a 
classification problem.

• Baseline 4: Straightforward ResNet-based VLP, which has four residual 
convolution modules and five-layer fully connected network. Each 
convolution module has 10 kernels of dimension 3 × 3, and the width of 
fully connected layers is 100.

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



（3）Multi-branched ResNet

Results: UD 6D localization performance versus SNR

• Our RCNN outperforms baselines due to our multi-branch RCNN design



（3）Multi-branched ResNet

Results: VLP error over deployment range and RCNN size

• It is sensitive to deployment range: larger distance, larger VLP error

• Benefit from enlarged RCNN: larger RCNN size, lower VLP error



（3）Multi-branched ResNet

Results: VLP error versus different degree of dynamics (system, environment)

• Serious dynamics, less discriminative feature, and hence large VLP error



（4）Bidirectional RCNN



（4）Bidirectional RCNN

• Intuition : RSS sample image with spatial-time texture/correlation structure.

• 9 PDs and 81 LEDs

• Sample image 

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564
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（4）Bidirectional RCNN

• Motivated by this intuition, we develop a BiRCNN to extract texture features 
and learn its mapping to UD location



（4）Bidirectional RCNN

Architecture: Bi-directional recurrent convolutional neural network, BiRCNN

• Bi-directional recurrent flows

• Output: UD location

• Input: 3D RSS sample images

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Architecture: Bi-directional recurrent convolutional neural network, BiRCNN

• Bi-directional recurrent information flow

Forward module

Cell state

Hidden state

Cell state

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Forward module：

• Forget gate

• Memory gate

• Output gate

• Hidden sate

• Cell state

Forget gate

Hidden state

Cell state
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（4）Bidirectional RCNN

Something different：

• Texture feature in 3D sample image

• 3D CNN-based memory gate 

for enhancing texture extraction

• Bidirectional time-recursive model

to extend time-correlation features

• Boosting UD tracking performance

in terms of feature and its extraction



（4）Bidirectional RCNN

Procedures: First train and then test

• Train: derive the optimal network parameter with lowest mismatch

• Test: determine UD location and pose for a given sample, 

using the well-trained Bi-RCNN. 



（4）Bidirectional RCNN

Pseudo codes



（4）Bidirectional RCNN

Setup:

• A room: 9m × 9m × 4m

• 20 dB SNR

• 81 LEDs

• 9 PDs

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Bi-RCNN configuration

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Baselines:

• Baseline 1: GCNN-based VLP, which uses Gabor filters for feature extraction.

• Baseline 2: MLP-based VLP, adopting a five-layer fully-connected network.

• Baseline 3: CNN-based VLP, which models the UD localization as a 
classification problem.

• Baseline 4: ResNet-based VLP, which has four residual convolution modules 
and five-layer fully connected network. Each convolution module has 10 
kernels of dimension 3 × 3, and the width of fully connected layers is 100.

• Baseline 5: Long short-term memory (LSTM)-based VLP.

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Results: UD 6D tracking performance versus SNR

• Our BiRCNN outperforms baselines due to problem-specific design

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

Results: VLP error over deployment range and recursive depth

• It is sensitive to deployment range: larger distance, larger error

• but not sensitive to recursive depth since first-order structure is dominant 
in RSS sample series.



（4）Bidirectional RCNN

Results: VLP error versus different degree of UD mobility

• Large degree of mobility, less time correlation, and hence large VLP error

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



（4）Bidirectional RCNN

• UD location and pose tracking using VLC is challenging due to RSS model 
mismatch caused by random channel fading and multipath interference.

• In this paper, we develop a novel BiRCNN-based VLP method to offer a 
robust UD tracking solution via learning reliable structures of dynamic 
propagation environment.

• We propose to extract spatial-time texture feature of RSS sample series for 
enhancing VLP performance.

• Simulation results verified the performance gain of our solution over state-
of-the-art VLP baselines.

• DL-based VLP vs SPM-based VLP

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to 
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564
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VLP Performance Limits

Intuition: resource and environment are two dominant factors 
affecting VLP performance

• System resource (bandwidth, SNR, the number of tx, deployment)

• Environments (NLOS interference, fading)



VLP Performance Limits

System Setup

• M LEDs with known location                and orientation 

• One mobile UD with a PD array

• UD location                and pose angle                 

• Let                                   be the joint vector. 

[1] B. Zhou, A. Liu, and V. Lau, “Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless 
Communications, Vol. 18, No.11, 2019, pp. 5227-5241
[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878
[3] B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



VLP Performance Limits

Problem Formulation

• UD location and pose tracking based on VLC aims to determine UD 
location        from varying samples



VLP Performance Limits

Our Goal

• VLP Performance Limits: For a given scenario with fixed resource 
deployment and invariant fading, what is the performance limit of VLP?

• Effect of Resource and Fading: How do system resource and fading 
environment (esp. NLOS interference) affect the VLP performance?

• Long-Term Performance Evolution: How does VLP error evolution over 
time for a mobile user?



VLP Performance Limits

Challenge

• Localization, orientation and SPM calibration are coupled with each other, 
and thus their performance are dependent mutually.

• UD mobility is difficult to predict and quantification

• Instantaneous measurement information is difficult to quantify due to 
nonlinear models and complex calculations (integration over nonlinear).

[1] B. Zhou, A. Liu, and V. Lau, “Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless 
Communications, Vol. 18, No.11, 2019, pp. 5227-5241
[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878
[3] B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



VLP Performance Limits

Strategies:

• Schur complementary for information decupling

• Laplacian approximation for complex statistical model and calculations



（1）VLP Error Bounds



（1）VLP Error Bounds

Two strategies to deal with NLOS interference

• LOS channel-based VLP

• NLOS channel-based VLP

• Different computational cost and prior knowledge,  different performance 

[1] B. Zhou, A. Liu, and V. Lau, “Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless 
Communications, Vol. 18, No.11, 2019, pp. 5227-5241
[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



（1）VLP Error Bounds

• LOS channel-based VLP error bounds

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



（1）VLP Error Bounds

• NLOS interference-caused error floor for LOS channel-based VLP

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878
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• NLOS interference-caused error floor for LOS channel-based VLP



（1）VLP Error Bounds
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（1）VLP Error Bounds

• NLOS channel-based VLP error bounds



（1）VLP Error Bounds

• NLOS channel-based VLP performance gain

Gain from NLOS linksGain from bias suppression



（1）VLP Error Bounds

• LOS channel-based VLP Information structure

• NLOS channel-based VLP information structure

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



（1）VLP Error Bounds

• Information structure: full channel aware vs LOS channel-only aware 

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



（2）Effect of Resource 
and Environment



（2）Effect of Resource Factor

• LOS channel-based CRLB on unbiased error
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（2）Effect of Resource Factor

• The effect of SNR
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（2）Effect of Resource Factor

• The effect of transmission distance

caused by Path loss and resolution

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
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（2）Effect of Resource Factor

• The effect of the number of LED sources
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（2）Effect of Reflection Channel

• The effect of reflection rate
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（3）Information Alignment

• LOS channel-based CRLB on unbiased error
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（3）Information Alignment

• localization cooperation => Information aggregation

• Spatial cooperation, multi-sensor fusion, mobility tracking 



（3）Information Alignment

• Optimal cooperation => Best information alignment
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（3）Information Alignment

• Optimal cooperation => Best information alignment
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（4）Mobile UE Tracking

• Instantaneous UE tracking Problem formulation

B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
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（4）Mobile UE Tracking

• Our Goal

• Establish error bounds for Instantaneous UE tracking error 

B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



（4）Mobile UE Tracking

• Instantaneous UE tracking error bounds

The essence of time-domain localization cooperation in mobile UE tracking is the propagation and aggregation
of localization information, in an information-theoretic view.



（4）Mobile UE Tracking

• Evolution of VLP information/error

B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
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（4）Mobile UE Tracking

• Evolution of VLP information/error

B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



（4）Mobile UE Tracking

• VLP Error Evolution: steady state

B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
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System Configuration

Intuition:

• VLP error bounds dependent on resource factors

• Performance limits of VLP systems can be fundamentally improved via  

[1] B. Zhou, A. Liu, and V. Lau, “Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless 
Communications, Vol. 18, No.11, 2019, pp. 5227-5241
[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless 
Communications, Vol. 19, No.7, 2020, pp. 4863-4878
[3] B. Zhou, A. Liu, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain 
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



（1）Resource Allocation

• Solution 1: Upper bound minimization

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and 
Sensing,” China Communications, 2023.



（1）Resource Allocation

• Solution 2: Stochastic Average

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and 
Sensing,” China Communications, 2023.



（1）Resource Allocation

• Solution 3: Alternate Optimization

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and 
Sensing,” China Communications, 2023.
B. Zhou, A. Liu, and V. Lau, “Successive Localization and Beamforming in 5G mmWave MIMO Communication Systems”, IEEE Transactions on Signal Processing, Vol.67, No.6, 
2019, pp.1620-1635. 



（2）Localization Beam Tracking

• Generate a sensing beam to continuously cover the vehicle

B. Zhou, A. Liu, and V. Lau, “Successive Localization and Beamforming in 5G mmWave MIMO Communication Systems”, IEEE Transactions on Signal Processing, Vol.67, No.6, 
2019, pp.1620-1635. 



（3）Communication vs Sensing

• Comm & Sensing performance tradeoff via budgeting resource

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and 
Sensing,” China Communications, 2023.



Conclusion

• Demand end: intelligence-driven communication and sensing

• Supply end: consistent software and hardware

• Solution: integrated VLC and sensing

• Challenge: NLOS, fading, non-convex nature, resource allocation

• Our work: 
• Robust VLP algorithm design: stochastic sampling, VLC-assisted VLP, DL-driven VLP 
• Insightful analysis: closed-form error bound, the effect of resource and fading
• Dynamic resource management: resource, beam tracking, C&S tradeoff

• Environment interference of VLP can be reduced via elegant cooperation 
between communication and sensing.



Future works

• Model based + data driven VLP

• UD velocity detection

• Multi-Target Detection 

• Communication + localization for VLC
• Multiband aggregation for VLP

• Beam Focusing for near-field VLP

• Sensing-assisted communication
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