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Background

6G-driven Location-Aware intelligent applications:
* Robotic navigation; Autonomous parcel sorting;
* UAV-based delivery;

* UE location and orientation are critical parameters.




Background

* Integrated Communication and Sensing, ICAS -> promising solutions
* Demand: 6G-driven apps requires comm + sensing.

High-data-
rate
transmission

High-
accuracy
localization

* Supply: software and hardware of C&S are compatible.

mm\Wave Terahertz  Visible light [ Communication spectrum ]

p [ Sensing spectrum ]



Background

Conventional UE localization solutions:

* WiFi-based localization solution: no angular resolution.
* GPS: not accessible for indoor applications.

e Radar: subject to environment.



Background

e Matrix view of conventional localization solutions
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Background

VLC integrated with localization:

* Low-cost: localization during indoor illumination.
e High angular resolution due to large free band.

e Simultaneous Communication and Localization

J. Armstrong, Y. A. Sekercioglu, and A. Neild. Visible light positioning: a roadmap for international standardization. IEEE Communications Magazine 51.12 (2013): 68-73.



Background

Conventional VLP methods
 Signal propagation model-based VLP

* Require perfect knowledge of Lambertian model

* Require perfect alignment of RX and TX orientation angles

* Prior knowledge of VLP systems, e.g., UE orientation angle, height, ...
* Channel fading is unresolved

* Fingerprinting-based VLP
* IMU-assisted cooperative VLP
e Deep Learning-based VLP



Background

Great challenge

 Random fading, Multipath interference,
* Lambertian modeling mismatch

* UD mobility -> Time-varying Doppler fading
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System Model

System setup

e M LEDs with known location p.,, € R® and orientation v,, € R’

* One mobile UD with a PD array
* UD location xr € R®? and pose angle up € R?

+ Let ax = [xn, ug] € R° be the joint vector o

) Qb(),m : \‘
’ ' """—-‘.',!,-_:‘
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5 LED transmitter 5 L
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System Model

Measurement Model

* The received waveform of visible light follows the lambertian model, which
is summarized as below (for each tx-rx pair, n-th subcarrier)

Im,n — gm,n(aR§ pm,n) + €m,n

* where &m.n(@r;9mn) denotes VLC signal propagation function absorbing
diffuse scattering and channel fading, depending on UD location

e ar is UD location parameter

* ©m,n = {fading coefficient, NLOS interference} : system parameters, time
varying due to dynamic environment

* ‘m,n: random measurement noise



System Model

. . g P8
Lambertian Radiation Model e
(,i')().‘m
* Signal propagation model
gm,n(aR; @m,'ﬂ) — Z am,ngl,m,n €XP (_j277fn,m7-l,m) ~~~~~~~~~~ F.[_‘l_’].e lt}; Soauerer
£=0:L—1 Via l.m
i pl.m
 Gain of each path 9¢,m,n = GrxGpath Gex “._ NLOS link \
\\\ ﬂ el,'nz
Pom .
- ) % X u
* Known tx OFDM pilot: @m,n LOS link . AR
k-— 01 1
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XR

The UE receiver



System Model

Lambertian Radiation Model
e Gain of LED Transmitters

Gix = V Wix (7 + 1)(COS (qbl’m))r

~~~~~ ... The [/th scatterer

V. \‘\ \."q Si.m
[ 1n2 m \\\\\ pl.m s‘;z‘
* Lambertian orderr = " Tncos(Az) “._ NLOSlink \
2 \\\\ %2 el.'nz
H V4 p 0,m %
e Response gain of UD’s PD LOS link ., T
Gy = UpWaWyu COS(@l’m) p
1 \‘\ r l,m
* Path loss G, = — 0 ¥
TP m Y 5
* XR
, (r 4+ 1)(cos (dr.m)) " cos(B;m) =pa=
* Gain of each path g¢m.n = vV Wixhem (cos (¢1,m)) m

27 912, m The UE receiver



System Model

Lambertian Radiation Model
* Finally, the received OFDM signal waveform

— 1 m)) cos(0rm
Im,n — th Z hﬁ,m (T il )(COS (¢l’ )) COS( L )eXp (_jQan,mTl,m) + €m,n

7T 02
¢=0:I—1 Pim

\/— (r+1) ( COS (¢0,m))r cos(0o m)

° = W i nlos -
RSS sample y ¢ 202, + > + €

 All propagation parameters depend on UD location and orientation:
Transmission delay (tau), radiation angle (theta), incidence angle (phi),
transmission distance (rho)
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Robust VLP Method

Problem formulation

e UD location and pose tracking based on VLC aims to determine UD
location ar from varying samples {z,,..|vVm,Vn}

A

Pup : (ag,h) = argminm&n |z — G(agr)h||3, (1)
QR
s.t. R(ugr) € SO(3), (2)

Tangent space C3*3
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Robust VLP Method

Problem formulation

Puip : (G, h) = arg min min |z — G(agr)h|?, (1)
aR
s.t. R(ur) € SO(3), (2)

Technical Challenge:
* NLOS interference, random fading (and even UD mobility)

* Non-convex problem nature (cost, constraint)

 Large uncertainty set (pose, channel)

ared error [dB]

Squ




Robust VLP Method

Our Solution:

* Lamberation model-based VLP
* LRM calibration-enhanced VLP
* Joint channel estimate with VLP
e Stochastic sampling

* FG-based VLP:
* FG interference model optimization-enhanced VLP

* DL-based VLP:
* Branched ResNet-based VLP;
* BiIRCNN-based VLP



(1) Stochastic Searching



(1) Stochastic Searching

Stochastic searching-based VLP

B Search particle xg(m), Yk =1: Ng

. ® Detecfion particle xy)(m), Vr=1:Np

- Generate a set of random particles (location, orientation:} e & s m-1w)

X Detecting step length L

{ak(n)a @k(n)‘vn =1: NS} ~ p(Z|O’,R) °.

o G IO ba | Sea rC h a%r B — arg max { 579}1 (?’I) ‘VTI — 1 . TS } 5 Search Particle Update

N Xp+1(m) : xp(m) ¢
oy (n)|[¥n=1:Ng ‘ )

e | ocal detection Q:I;:B(n) — arg max {g.;{_ﬂ(n)|‘v’fr =1: ND}. |

ai_’_ : (n)lr=1:Np

* Stochastic update o, (n) = a(n). if v, (n) > o (n),

o’ (n) = decison(a$®, att

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Stochastic searching-based VLP

e Update particle until they converge

* Localization decision &, = Y oi(n)ouw(n),

(Start)

Input the measurements
labeled by the LED
positions and orientations

Initialize the
search particles

n=1:Ng

Output the estimation
based on the converging
¥ £ search particles
Candidate Update Generation:

(Multi-Scale Search)

S ) Generate a Mﬁﬂm
Local Detection  candidate update Decision:
e for each search
Random Transition Darticle Recertormiectho
History Inheritance candidate updates

(The next iteration)

[Iteration ends if the iteration number exceeds the acceptable maximum
number or the estimation error reaches a predefined threshold]

120

110

105

Coverage atea of initial search particles
of the PASS algorithm

.....................................

Initial search particles

Updated search particles

100 3 -, H
Recorded location
O Actual location s;
a5 I I
100 105 110 115 120

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and

Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

What is different in our solution

» Statistical optimality-guided localization decision a. = > ¢i(n)ar(n).

* Robust search (local + global, location + angle rotation)

* Guaranteed convergence

Theorem I (Convergence of PASS to Global Optimum):
Given the sufficiently large number of iterations. the PASS-
based estimate & (Ng ) in Eq. (30) will converge in probability
to the globally optimal solution aj. i.e.,

-\'hm " Pr{|a;(Ng) —agl, <e} =1, Ve >0, (31)
T

where || - ||, denotes the ¢>-norm on a vector.

n=1:Ng

Theorem 2 (Convergence of PASS to True Value): Given a
sufficient number of search particles and iterations for an un-
biased SPAO system, the PASS-based estimate a.(Ns, |Q2r|)
will converge in probability to the true value aeg ., asymptotically,
with a large measurement sample limit,

N;il—nx, Pr{\ e 73 (NS.

QRD — aglh < 55} =1, Ve > 0.

k—oa,
|Qp |—oc

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Simulation Settings
 SNR=20 dB, 81 LEDs on the ceiling, 9*9*4 space, RSS samples used

. . Inlos
* NLOS propagation scenario: cos.m = Pnlos B (XRs ft ). ©nles € [0,0.5)
1— fnlos . -
® Basennes e (Baseline 1): Geometric trilateration algorithm [14] with o P
perfect alignment of LED and UE orientation angles; P ”';—’-\‘.Jlﬂqur?ﬁ’ ﬁ‘tﬁ’uﬁi ‘F‘ﬁ]ﬁf;;m
® (Baseline 2): Brute force search (BFS)-assisted maximum L Tﬁ’u ki t Wﬂ?,&ﬁ“'
likelihood estimate (MLE) algorithm:; 3+ ------ﬂf@ﬁ’ X hﬁﬁgj{g Ry

® (Baseline 3): Newton-Raphson positioning (NRP) method ~ ,
[9] using locally linear approximation for nonlinear system
model;

® (Baseline 4): Traditional PSO method [22] dedicated to
non-convex optimization;

e (Baseline 5): Traditional SA method [25] dedicated to non-
convex optimization.

!
o~

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.
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(1) Stochastic Searching

Simulation results

* Convergence
* RMSE vs SNR

5
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B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Simulation results
* RMSE vs UD Location

1

e e o
B o] o]
i

Positioning Error [m]
o
o

2 Y [m]

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Simulation results
* RMSE vs UD height and polar angle

1 T T T T T T " 1.8 T T T T T T T o]
. . . . | - - - - ; ; :
0.9k e i . : - 3 : i A — 8 — The PASS-based positioning | : ; ; JI 0 0.8
= ' : ; 1| — B — The PASS-based positioning | 1671 .4 . The PASS-based orientating | |~ o c Ol -
0.8k . . . ---O---The PASS based onentatmg N : : : : : : : !
9 ' : : . ‘ . . | 1.4------- ......... ......... ......... .......... ......... ......... ........
T S S S S N SR L] = ' ' ' ' ' ' E
Uo7 | T Eqe E
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2oal. ST S SRS SO SN AU S A R o CUE logation CRLI By -
5 : 3 S SN I R . O e
'Ea 0.2 - R AR R AREREE R |1 uk%
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B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Simulation results
e RMSE vs the number of LEDs and NLOS interference

10° —————— T T T 0.7 ; |
it S The proposed PAgg‘bE‘SEd positioning — & —The proposed PASS-based location estimate D
o-[L 9~ The proposed PASS-based orientating | 0.6 I =9~ The proposed PASS-based orientation estimate| .~ |
' ' ' - -
7 -
10 B Pug
- -
— 0.5 -
E [N e
S 10’ i —_ -
o E o0ar e
-~
: 3 ‘-
g ...... E U 3 | P Fd
M 10" prasnd _ [ S Jﬂf‘
3 -
o & a7
~ 02 7 ¢
. |
10 3 ~ -
______ 04F
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B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(1) Stochastic Searching

Conclusion:

* MMSE-guided stochastic searching is used for addressing non-convexity

challenge.

* Convergence of stochastic searching is ensured, which can hit the global
optimum almost surely as the number of particles tends to be infinity.

Theorem I (Convergence of PASS to Global Optimum):
Given the sufficiently large number of iterations. the PASS-
based estimate & (Ng ) in Eq. (30) will converge in probability
to the globally optimal solution aj. i.e.,

-\'hm Pr{|a;(Ng) —agl, <e} =1, Ve >0, (31)
)

where || - ||, denotes the ¢>-norm on a vector.

Theorem 2 (Convergence of PASS to True Value): Given a
sufficient number of search particles and iterations for an un-
biased SPAO system, the PASS-based estimate a.(Ns, |Q2r|)
will converge in probability to the true value aeg ., asymptotically,
with a large measurement sample limit,

in\riil_nx‘ PF{‘ éff (*NTS' EZR ‘) o (IR‘ 2 i: E} =1, Ve > 0.

k—oa,
|Qp |—oc

B. Zhou, V. Lau, Q. Chen, and Y. Cao, “Simultaneous Positioning and Orientating for Visible Light Communications: Algorithm Design and
Performance Analysis”, IEEE Transactions on Vehicular Technology, vol.67, no.12, 2018, pp.11790-11804.



(2) Channel Estimate-Based VLP



(2) Channel Est-Enhanced VLP

Challenge:
* VLP problem is convex w.r.t. channel state and emitting power.

Pspao : (Xg, ftp) = argmin |z — G(XR_);LRH%. (10)
XR:MHp

* SCA-based iteration by exploiting hidden-convex substructure is
employed for addressing non-convex location estimate.

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE
Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(2) Channel Est-Enhanced VLP

Solution :
. SCA guided Iteration between localization and channel estimation

--------------------------------------------------------------------------------------------------------------------------------------------------------

The original VLP problem Pyrp : (Xg, fig) = argmin ||z — G(xg)up |2. (12)
XR:HR

.
--------------------------------------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------------------------------------------------------------
4 *

UE orientation update subproblem Po:  fi; = argmin ||z — G(ﬁ[;]),u-RH%,
- ,LL

(iteration) s.t. ||mg |g < L (14)
UE position update subproblem Pp: X[, 1 = arg min ||z — G(xg) L |5 '
xR -

. .
------------------------------------------------------------------------------------------------------------------------------------------------------

SUN YAT-SEN UNIVERSITY

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE

Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(2) Channel Est-Enhanced VLP

Solution :
e SCA-guided lteration between localization and channel estimation

{I"P“‘ SHESEETTRSIE 5. Algorithm 1 The SLLS-Based SPAO Algorithm

i iaieileleieisisisisiiuluisisinisisisini) isisisisisislsisisisisisiisisisisisisiiisisisisi Input : The measurement vector z.

L} - " .. . ~

; Xli] él i O : 1 Initialize X[q).

A A A A & . 2 r__“_‘:‘_"l‘_t_"’f U : 2 While not converge do (fori=1: K)

[ = : et o . 1 = e O f : " . . . -

. I ; [Positioning Component] E ; [Orientating Component] ¢ ; [Orlentauon U_pdate: l[]PL]t {.XIZ_] 7 and output H’{ﬂ]

1 . y - - - 7 ! : s Y qausmmmmmmn EEEELE susnannannantannanbanlibonatnannonnunnnngununnin

5 | 1| Determine candidate locationx; '* Determine the optimal | ! : 3 - Determine fi; as per (15). L 2 ‘#

P j[PeedonCl | estimate fhiqof coefficient | 3 : [Position Update: input {/t,1, 2z} and output xp; ]

] | Cecor b on theclosd.|§ | Position Update: input {1y, z} and output Xp;]

g Pctcgmi[:T;I;e location updateXj; )| 3 3 | form update equation (15). |3 : 4 - Determine X[E.] as per (21).

' =z i [ based on (17). v : i . '

CH T }--------;----------------‘ e o GnE R E 5 - Determine ;) as per (22).

: OutputXii 1 , ** Input : 6 - Determine xp; as per (17).

E ® (The next iteration, § := 4 4 1) X = ' 2 End

" L -

"""""""""""""""""""""""""""""""""""""" ' 8 Determine W and upg as per (12) and (13), respectively.

T RAS P p y

Output Xp = Xpjand ftp = f1);). Output: xp = X};. Wr and up .

B. Zhou, A. Liu, and V. Lau, “Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power Emission”, IEEE
Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(2) Channel Est-Enhanced VLP

Simulation results

 Settings: 20 dB, 20 LEDs on the ceiling, 9*9*4 space
* Using RSS measurements

nlos

* NLOS prOpagatiOn scenario: Snlos,m = 1 h'?’i"t{}:ﬁ" f-‘E'H} 5’-;’11]{:-;; .E_ [0 0.5)

Ey

— ¥nlos

* Baselines

L=

e Baseline 1: Gradient descent-based SPAO method [12].
e Baseline 2: Line search-based SPAO method [13].

B. Zhou, A. Liu, and V. Lau, "Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(2) Channel Est-Enhanced VLP

Simulation results:
* Convergence, and CPU time

102 T T T T T T T T T 1 . : : : : : . : :
The proposed SLLS-based location estimate R Baseline 5
Location CRLB Basalina 1
10! £ The proposed SLLS-based orientation estimate : _
Orientation:vector CRLB = The proposed SLLS algorithm
The proposed SLLS-based emitting power estimate E' 10°
10° Emitting power CRLB 5
:\ 2 -‘.“-‘.- -
(] E Yy © e — —
210 \ = 107 T
o E £ 4] ]
Ly S N
102 £} “.‘\ ____________________ 8 Saels
" = . . . _\ E 10'2 -----------
................................................................................................ 0
103 F
10.4 1 1 I 1 1 1 1 1 I 10_3 1 I 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 0 05 1 1.5 2 25 3 35 4 45 5

Iteration number

CPU time [s]

B. Zhou, A. Liu, and V. Lau, "Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(2) Channel Est-Enhanced VLP

Simulation results:
. RMSE vs SNR, room size

The ratio of NLOS 5|gnal strength
fnlos = 0,0.01,0.05,0.1,0.2,0.3,0.4,0.5

102 g
- The proposed SLLS-based location estimate
Location CRLB

10' A ; 10

100 107 ¢
'g' [
£, p

w 107 F

i 107 %) ;
= Z I
o 102 B

3L
10 The proposed SLLS-based orientation vector estimate
i Orientation vector CRLB

10 ©  The proposed SLLS-based emitting power estimate
E Emitting power CRLB

[The proposed SLLS-based SPAO]"//

102 ¢ ;
. [UE-location-CRLB}/

-20 0 20 40 60 80 1 ' ' 5
10 10
SNR [dB] The length of room [m]

B. Zhou, A. Liu, and V. Lau, "Joint User Location and Orientation Estimation in Visible Light Communication Systems with Unknown Power
Emission”, IEEE Transactions on Wireless Communications, vol.18, no.11, 2019, pp. 5181-5195



(3) Multi-branched ResNet



(3) Multi-branched ResNet

* Intuition : spatial-time texture/correlation structure in RSS sample image.
* 9 PDs and 81 LEDs

e Sample image
m=1:M,n=1: N|

A = matz,, ,

* Texture structure fundamentally
stems from the signal propagation
and hence depends on UD location
* This texture structure can be used

-
W
=)

as feature to derive UD location =5

eCeIvers
<>

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detect

Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile By

80 123456

0
ion Uzs?ng \;?siblegl%ghtsgvithgﬂt Model Knewledgs; Branch-
| tommuﬂicatiOO@bDéM&éﬁ,p%%%tersj



(3) Multi-branched ResNet

* Motivated by this intuition, we develop a branch-structured RCNN to
extract texture features and learn its mapping to UD location parameters

a0 1
[ Branched RCNN ] [ Branched APN ]
% M 0.8
- = 70 ’
— o
3 ]
= s 60 0.7
— =
O (=]
— 2 0.6
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=
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(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

° Input: 3D RSS Sample Images [ Branched RCNN ] [ Branched APN ]

* Branched residual network, ResNet = E 0

* Global average pooling, GAP et g L1 e el 1,

* Aggregative perception network, APN =gy E-

e Qutput: UD location estimate "_.g =
€5vEl Moaule #4 g

ResNet module #1 ,f
J 1

/Al

[Input:RSS image]




A =mat[z,, ,)m=1:M,n=1

10 PD

(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

* Input: 3D RSS sample images
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(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

* Input: 3D RSS sample images
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(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

[ Branched RCNN ]

* Input: 3D RSS sample images

* Branched residual network, ResNet
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(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

* Input: 3D RSS sample images [ Branched RCNN ]

 Branched residual network, ResNet

* Global average pooling, GAP
Y —

* Aggregative perception network, APN
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J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detectiorf Using MBHSESE Ilteelwitho del Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Ind i ' cations (

PIMRC), 2022.



(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

* Input: 3D RSS sample images (BTt LENT [ Branched APN |

2> GAP

* Branched residual network, ResNet

* Global average pooling, GAP
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Structured Residual Learning Method,” IEEE International Symposium on Personal, Ind i ' cations (PIMRC), 2022.



(3) Multi-branched ResNet

Architecture: branch-structured recurrent convolutional neural network, RCNN

* The proposed multi-branch RCNN will behave as parallel pipelines to capture
environmental-invariant clustering structures from diverse-level sample
texture features,

* thus rendering a reliable VLP solution over dynamic environments.

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



(3) Multi-branched ResNet

Procedures: First train and then test
* Training: derive the optimal network parameter with lowest mismatch
* Testing: determine UD location and pose for a given sample,

using the well tramed branched RCNN.
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J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



(3) Multi-branched ResNet

Procedures: First train and then test
* Training: derive the optimal network parameter with lowest mismatch
* Testing: determine UD location and pose for a given sample,

using the well-trained branched RCNN.
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J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



(3) Multi-branched ResNet

Pseudo codes
Algorithm 1: Branched RCNN-based VLP method

Input : z, {GO) u) ¢W|Vy=1:7:) and w.
Determine A based on z as per (5).

Set the input of the first ResNet to be Céo) = A.
For v =1: 7.

[ReSNet] Cé’?”) — 99|(:g’}|/;)5 (Cé’)f—l).#(/ﬂ g(’Y) G(’Y))’

[GAP]: determine x") = @cap (Cé”/)), as per (19);
End
[Branched MLP]: é&xp = @y p(X: W), as per (20).
Output: UD location parameter estimate .

n = W N =

~ &

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



(3) Multi-branched ResNet

Setup:
Saiiicutal ikt —ral %Wﬁ Nk ?lﬁﬁp
* SNR = 20 dB T gy TP N
e 81 LEDs - T EI"EEET‘ED TR

* 9 PDs

* RSS samples image .: \I/

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



Branched RCNN configuration
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(3) Multi-branched ResNet

Baselines:
e Baseline 1: GCNN-based VLP, which uses Gabor filters for feature extraction.

e Baseline 2: MLP-based VLP, adopting a five-layer fully-connected network.

e Baseline 3: CNN-based VLP, which models the UD localization as a
classification problem.

* Baseline 4: Straightforward ResNet-based VLP, which has four residual
convolution modules and five-layer fully connected network. Each
convolution module has 10 kernels of dimension 3 X 3, and the width of
fully connected layers is 100.

J. Zhu, B. Zhou, X. Wang, X. Sun, and H. Chen, “Robust Device Position and Pose Detection Using Visible Light without Model Knowledge: A Branch-
Structured Residual Learning Method,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2022.



(3) Multi-branched ResNet

Results: UD 6D localization performance versus SNR
* Our RCNN outperforms baselines due to our multi-branch RCNN design

1
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Fig. 6. UD location estimate error versus SNR. Fig. 7. UD pose angles estimate error versus SNR.



(3) Multi-branched ResNet

Results: VLP error over deployment range and RCNN size
* It is sensitive to deployment range: larger distance, larger VLP error
* Benefit from enlarged RCNN: larger RCNN size, lower VLP error
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Figure 14. UD location estimate error versus localization
area width W,i4¢, and RCNN size 7.



(3) Multi-branched ResNet

Results: VLP error versus different degree of dynamics (system, environment)
 Serious dynamics, less discriminative feature, and hence large VLP error
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(4) Bidirectional RCNN



(4) Bidirectional RCNN

* I[ntuition : RSS sample image with spatial-time texture/correlation structure.
* 9 PDs and 81 LEDs
e Sample image

A = mat[zﬂ?}n\m =1:M,n=1:N]|

(# time slot) 81 LEDs Data label
- ) . . L , _ (UD location and pose
J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to

Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

* [ntuition : RSS sample image with spatial-time texture/correlation structure.

* 9 PDs and 81 LEDs "
e Sample image 08

A=mat[z$fb)’nm:1:M,n=1:N] 107
* Texture structure fundamentally ((:
stems from the signal propagation 0.4
and hence depends on UD location zz

* This texture structure can be used

as feature to derive UD location P— Sl LEDs Data label

- ) . . L , . (UD location and osgj)
J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to

Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

* Motivated by this intuition, we develop a BiRCNN to extract texture features
and learn its mapping to UD location
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(4) Bidirectional RCNN

Architecture: Bi-directional recurrent convolutional neural network, BIRCNN

e Bi-directional recurrent flows
* Output: UD location =
Backward |

* Input: 3D RSS sample images .
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J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

Architecture: Bi-directional recurrent convolutional neural network, BIRCNN

e Bi-directional recurrent information flow
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J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN
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(4) Bidirectional RCNN

} t aD N
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(4) Bidirectional RCNN
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(4) Bidirectional RCNN
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(4) Bidirectional RCNN

Forward module: Chw

» Forget gate gt = veclhy, ", z%].
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(4) Bidirectional RCNN

’r

Something different: Crw

* Texture feature in 3D sample image

* 3D CNN-based memory gate il

FCNN (t)
for enhancing texture extraction e
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g hew
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(4) Bidirectional RCNN

Procedures: First train and then test
* Train: derive the optimal network parameter with lowest mismatch
* Test: determine UD location and pose for a given sample,

using the well-trained Bi-RCNN.
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(4) Bidirectional RCNN

Pseudo codes

Algorithm 1: Our Bi-RCNN-based VLP method

Input : RSS sample sequence {zgl Yr=1:K}.
1t Fortr=1:K
Abstract a subsequence {z5 ' |vi=1: Kg).
Initialize {ll,r:f,_:,‘, llgﬁ,c%.cgﬁwﬁ =1:Ks}.
Fort=1:Kg
Determine & [FE"' by (4),
Get SE) via normalizing SEJ as per (3).

it

- T

i

6

7 Get EE,) via normalizing zié"] as per (6).
§ Determine FGG input g,rF:N by (7).

] Determine FGG output \&'r,:i,l, by(9).

10 Determine OG input R[FE,N as per (10).
11 Determine %HN as per (11).

12 Determine MG output xFﬂ,‘, as per (12),
13 Update memory cells C,r:i,?",- as per (14).

14 Update the OG state e;}%,_.'],; as per (13).

15 Update the hidden state h[F:',EH, as per (16).
16 Update backward modules {-::EfW thth :
7] Update &' as per (17).

18 End

19 End

Output: UD location trace {Exgﬂ‘v’? =1:K}.




(4) Bidirectional RCNN
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J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirecti {ﬁ"ﬁl’ SNR, _20dB

Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

Bi-RCNN configuration
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Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

Baselines:
e Baseline 1: GCNN-based VLP, which uses Gabor filters for feature extraction.
e Baseline 2: MLP-based VLP, adopting a five-layer fully-connected network.

e Baseline 3: CNN-based VLP, which models the UD localization as a
classification problem.

* Baseline 4: ResNet-based VLP, which has four residual convolution modules
and five-layer fully connected network. Each convolution module has 10
kernels of dimension 3 X 3, and the width of fully connected layers is 100.

e Baseline 5: Long short-term memory (LSTM)-based VLP.

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

Results: UD 6D tracking performance versus SNR
e Our BIiRCNN outperforms baselines due to problem-specific design
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J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



(4) Bidirectional RCNN

Results: VLP error over deployment range and recursive depth

* It is sensitive to deployment range: larger distance, larger error

* but not sensitive to recursive depth since first-order structure is dominant
in RSS sample series.
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(4) Bidirectional RCNN

Results: VLP error versus different degree of UD mobility
* Large degree of mobility, less time correlation, and hence large VLP error
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(4) Bidirectional RCNN

e UD location and pose tracking using VLC is challenging due to RSS model
mismatch caused by random channel fading and multipath interference.

* In this paper, we develop a novel BIRCNN-based VLP method to offer a
robust UD tracking solution via learning reliable structures of dynamic
propagation environment.

* We propose to extract spatial-time texture feature of RSS sample series for
enhancing VLP performance.

e Simulation results verified the performance gain of our solution over state-
of-the-art VLP baselines.

e DL-based VLP vs SPM-based VLP

J. Zhu, G. Chen, B. Zhou and X. Sun, "Visible Light-Based Position and Pose Tracking: A Bidirectional Recurrent Convolutional Learning Method to
Address Environment Dynamics," 2022 IEEE/CIC International Conference on Communications in China (ICCC), 2022, pp. 559-564



Outline

e Background

e System Model

* Robust VLP Algorithm
* Performance Limits

* Resource Allocation

* Conclusions



VLP Performance Limits

Intuition: resource and environment are two dominant factors
affecting VLP performance

» System resource (bandwidth, SNR, the number of tx, deployment)

e Environments (NLOS interference, fading)
e

8 3 LED transmitter

Positioning Error [m]
© o 9o
R o2} =]

e
N




VLP Performance Limits

System Setup
e M LEDs with known location p.,, € R® and orientation v,, € R’

* One mobile UD with a PD array 65 ) _
5 LED transmitter
° U D Iocatlon XR € Rg and pose an gle UR < R?’ < 6 ‘‘‘‘‘‘‘‘‘‘‘ f \ pm
* Let ar = [xr,ur| € R® be the joint vector.
(NL()S){\

[1 B. Zhou, A. Liu, and V. Lau, "Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless
Communications, Vol. 18, No.11, 2019, pp. 5227-5241

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878

[3] B. Zhou, A. Liy, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



VLP Performance Limits

Problem Formulation

e UD location and pose tracking based on VLC aims to determine UD
location @r from varying samples {z,,»|Vm, Vn}

Puip: (&r,h) = argrg%nm&n |z — G(agr)h]||5, (1)
s.t. R(ur) € SO(3), (2)
[LED #1] [LED #2] [LED #3] Tangent space C**?

Observation information Observation information Observation information ~ N A
Px:l and ?";l Px:‘l and Pu:‘.’. ,Px:."{ and Pl_l:fl |:f"\ ( )]
-~ . 11S9r (B by ) | Ry
6 \‘ "o D =
. ~ b/ X “ ~- ¢ . ~ ’ ~ - .
N \‘ -6 Y o N N ;
> -~ AR .
\‘,/ - e 4
L Y - - o
. “a
. - o
) bl - i . .A

Manifold SO(3)

UE location error * UE orientation error
B, (x.u) B.(x,u)



VLP Performance Limits

Our Goal

* VLP Performance Limits: For a given scenario with fixed resource
deployment and invariant fading, what is the performance limit of VLP?

* Effect of Resource and Fading: How do system resource and fading
environment (esp. NLOS interference) affect the VLP performance?

* Long-Term Performance Evolution: How does VLP error evolution over
time for a mobile user? B, ~ scaling(bandwidth), & bandwidth — 0

Ba,, ~ scaling(N LOS interfererv:ejl. as NLOS interference — O
Ba, ~ scaling(chaﬂﬂel variance). as channel variance — 0

Bea,, ~ ﬂca_ling(RSU state error), as RSU state error — 0



VLP Performance Limits

Challenge

* Localization, orientation and SPM calibration are coupled with each other,
and thus their performance are dependent mutually.

 UD mobility is difficult to predict and quantification

* Instantaneous measurement information is difficult to quantify due to
nonlinear models and complex calculations (integration over nonlinear).

[1 B. Zhou, A. Liu, and V. Lau, "Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless
Communications, Vol. 18, No.11, 2019, pp. 5227-5241

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878

[3] B. Zhou, A. Liy, V. Lau, J. Wen, S. Mumtaz, A. K. Bashir, and S. H. Ahmed, “Performance Limits of Visible Light-Based Positioning for Internet-of-Vehicles: Time-Domain
Localization Cooperation Gain,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 8, 2021, pp. 5374-5388.



VLP Performance Limits

Strategies:
e Schur complementary for information decupling
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 Laplacian approximation for complex statistical model and calculations
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(1) VLP Error Bounds



(1) VLP Error Bounds

Two strategies to deal with NLOS interference
* LOS channel-based VLP
2

PLos-vLp : (Xios; Uies) = argmin ||z — Gios(X) (1) ||5.

e NLOS channel-based VLP

PNLOSVLP ° (Xnlos- Unlos) = arg min lllill{HZ—G(X.ﬁg)ﬂ(ll)“g : VBs},
\‘—v—/

X.,u

Cost function ¥(x,u)

* Different computational cost and prior knowledge, different performance

[1] B. Zhou, A. Liu, and V. Lau, "Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless
Communications, Vol. 18, No.11, 2019, pp. 5227-5241

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(1) VLP Error Bounds

* LOS channel-based VLP error bounds
Thmrem ) {LOS Based VLP Ermr Baund} The LOS-based

............................................................................................

from belc-u-. re:specmel}-, as fD]lou-b,

E{|[%i0s — x|[2} > trace(B(x, u)) + v 23
{Hiqcs XHé} B race(‘} I:';S(X'uj) v (25) Theorem 3 (LOS-Based VLP Error): The LOS-based UD
E{||[tos — ull3} = trace(B*(x, u)) + vy, (24) location and orientation errors are approximately character-
los ) - —~ 1 ized, respeunel} as follows,
B = (WHIGS(X)L(U)FIGS(X)U (u) His(x j‘)

2 —2
%|05: ..A.F'IR.(U)GT (X)Vgg()i? U)GQE(K)R [:'Ll) ? [26 XHQ} (||§bi35| ‘2+]E{||E| 2})||H|05(X)U(U)||2 )
.................. (ll E{ ||'Ll|05 —'I_l||~2 } = (||‘;bias| % —|—E{ ||E| % }) || G’|05(X)RT('LI) ||2—2 ..

..................................................................................

amd Uy 1IN LDS bdaed VLP are 1pprm1m 1te]} given b}

Ux == |§b|35||2| H|GE( )U( 1) 2—11 (35)
|9b|35||E|IR(U)CT|DS( )Hg_l (36)

el e B e

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(1) VLP Error Bounds

e NLOS interference-caused error floor for LOS channel-based VLP

Remark 3 (NLOS-Caused Error Floor in High SNR )

Combining corollaries 1 and 2 with theorem 2, it is implied that, as SNR increases
(e.g., ||€]|5 — 0), the VLP error E{||Xx — x||3} and E{||G — u||3} will reduce and finally

hit an error floor due to the non-ignorable NLOS link-caused VLP bias in the high SNR
region (in this case, the NLOS component will become the dominant error source).

E{||x — XH%} > trace(Bx(x,u)) —f—s.‘t--?": """"

E{||6 — ul|3} > trace(Bu(x,u)) 4§ op2
= ~ s i
O(w—1) 0(1)

[
S—

------------

trace(By(x,u)) ~ O(SNR™1).

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(1) VLP Error Bounds

e NLOS interference-caused error floor for LOS channel-based VLP

Corollary 2 (NLOS Link-Caused Error Floor in LOS-Based
VLP): As the SNR increases infinitely, the LOS-based VLP
error will tend to the following asymptotic limit:

—x[|3} ~ E{|[sbias||3 } | Hios(x)U(u) |5 2,
iios — 1|2} ~ E{||Sbias||2} ]| Glos(x) R (0)]|5 2,

SNR— oo
lim E{
R

SMR— oo

Corollary 1 (Scaling Rule of LOS-Based VLP Bias): The
LOS-based VLP bias scales with ||Spias|[2 as

L,x —
lim ~ [[Hos(x)U(u)|[7 ", (37)
|| Sbias||2—0 | “:bIESHZ

Uy
hm
lsnisliz—0 |[Sbias][2

||R( )G|GE( ) 13 (38)

1, i
10° ¢ P I I 1 r 1 '
. —&— LOS-based location AMSE &2
"’*“\f,\ NLOS-based location CRLB Bre:
100 N By | =€ -- LOS-based orientaion AMSE S* I
: 'H.& e - NLOS-based orientation CRLB E"'U‘-"
— 107 8. w
= ‘ {} ¥ 4 & M
= | S GERD S S At
S
£ 10 E
=] ¥ :
g LTS
103 7
Performance gain from / Y
107 ] harmessing the NLOS links
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(1) VLP Error Bounds

e NLOS channel-based VLP error bounds

Theorem 4 (NLOS-Based VLP Error Bound): The NLOS-
based UD location and orientation estimate errors will be
bounded from below as follows,

: Bg} > trace(%;'c'os(x,u:ﬁs)). (39)
: Bg} > trace(%'l'l'os(x,u:ﬁs)). (40)

[V ST N ]

E{Hﬁnlos — u

—1

952{'“5 (u;H(xjU(LI)F(X)UT(LI)HT(X)—E;ms(x,u})

!;Bfllns (u;’R(u)GT(x)V (x, u)G(x)'RT(u) — EEDS(X? u))_l

1 .
1“ 1 L X 1 T T T
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(1) VLP Error Bounds

e NLOS channel-based VLP error bounds

Theorem 4 (NLOS-Based VLP Error Bound): The NLOS-
based UD location and orientation estimate errors will be
bounded from below as follows,

Xnlos — X3 : Bs} = tl'ace(%yclos(xe U-;)SS)): (39)
Unios — ul|3 ' Bst > trace(%fl'os(x,u;ﬁs))_, (40)

E{
E{

Remark 4 (Vanished Error Floor of NLOS-Based VLP): 1t
should be noted that the information reduction £"'° and £"°
are proportional to w. Therefore, when SNR — oo, the NLOS-
based VLP error bound B and B"° will approach zero
due to the exploitation of the NLOS propagation knowledge in
the UD localization, as implied by Theorem 4. Hence, as SNR
increases, there 1s no error floor in the VLP method after
exploiting NLOS propagation knowledge. This implies a huge
VLP performance gain from harnessing NLOS links. L]

—&— LOS-based location AMSE S
55— NLOS-based location CRLB B
— -4 —- LOS-based orientaion AMSE S¥*
MLOS-based orientation CRLB E‘jl":"-*

hamessing the NLOS links

Performance gain from / Y
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(1) VLP Error Bounds

* NLOS channel-based VLP performance gain

Corollary 5 (NLOS-Based VLP Information Gain Over
LOS-Based VLP): The performance gain of NLOS-based VLP
over LOS-based VLP, from harnessing NLOS links, is given
by

QB (x,u) = W(x,u) + T2 (x, ), (60)

@ @
Gain from bias suppression Gain from NLOS links

L= =

WL?E(X, u) = ((jl?s)_ljiiag(jl}?s)_l—l- (Jlﬁa)_l)_lq (54)
TP — || pias||5 “Hios (x) U(u)UT(u) Hi (x), (52)

T'% = WHos(x)U(u)Flos (x)UT(u) HL (x), (49)

los

104

—=—UD location estimate ]
—= —-UD orientatin estimate h

o
TTTT

Gain from harnessing NLOS links
=3 EM
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o
o
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(1) VLP Error Bounds

e LOS channel-based VLP Information structure

Lemma 1 (LOS-Based VLP’s Equivalent FIM): The equiv-
alent information matrix of the LOS-based VLP method 1is
approximately given by

Q'zfg(x._ u)~ ((Jf‘s(x, u])_l—l—(ji"as(x? Ll))_l)_l, (53)

——
Q% (x,u)

e NLOS channel-based VLP information structure

Lemma 2 (NLOS-based VLP information matriz): The equivalent
FIM of NLOS channel-based VLP is given by

Q?clos(xa 11) _ JLSS+J;I(|OS

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(1) VLP Error Bounds

* Information structure: full channel aware vs LOS channel-only aware

Visible light RSS measurement z

8 8
(] 0
] NLOS links 0
(] [ ]
[ 0

(] .
. \" \& \\‘hb‘ b,’ ' . :
N g
: ; AR : :
............ .
: LOS information J ';ZS ' Biased error Ux 1 @ : LOS information ;7 ',fs NLOS information J ',’('°S :
s ' 8
]
: Equivalent location information Q' (x, u) : : Overall location information Q7% (x,u) .
§
: v *_ _____ . : : ¥ 0
¢ | Estimate error bounded ‘ : ;0 B ’
0 by B (x, u) s Biased error vy | ¢ . | :
0 S e cccccccccae : : ¢ | NLOS-based VLP error bounded by B3 (x,u) | 4
0 8
§ LOS-based VLP error : B :
8 ] 0
]
LOS-based VLP method NLOS-based VLP method

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(2) Effect of Resource
and Environment



(2) Effect of Resource Factor

e LOS channel-based CRLB on unbiased error

—1
Ex (X, l.l) = ( SNR - Dx(}{, 1.1) — X prior ) . (18)
N e
Observation information 2™

L. -
T

Total location information J x(x.u)

~1
Bu(x,u):( SNR - Dy (x, u) +Upﬁcr) . (19)

W

Z-axis

Observation information Hfjhs
L™ &
gt

Total orientation information 7 (x.,u)

Dy(x,u) = Hx)Ku)F(x,u)(K) (H(x))", (0 |
Du(x,u) = R(u)(G(x) TV (x,u)G(x)R (u), (1) Y-axis X-axis

Definition I (Information Ellipsoid): Given an information
matriX P, 1ts information ellipsoid Ep, 18 defined as the
set of points Ep, = {x € Rz Py.me = 1}. ]

(1 B. Zhou, A. Liu, and V. Lau, "Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless
Communications, Vol. 18, No.11, 2019, pp. 5227-5241



(2) Effect of Resource Factor

Remark 1 (VLP performance dependency)

e |t is shown that the RSS-based VLP error performance depends on
Q|,

m the number of independent measurement sources, i.e.,

m LED deployment {pm|Vm € Q},

m LED orientations {um|‘c”m - Q},

m measurement resolution matrix (’Dx(x, u), D, (x. u))

m SNR (inversely linear).

e (Resolution Information): The resolution information matrix depends on the choice
of the measurement signal and it is essentially determined by the measurement
function hm(x,u). This metric indicates the capability to recognize the difference in «,
for a given variation of measurement zp,.

e A zero-valued resolution information matrix means the unobservability of a
parameter, since the measurement will remain invariant for different values of this

parameter. Obviously, a measurement system with a high resolution (sensitivity) leads
to a good VLP performance.




(2) Effect of Resource Factor

* The effect of SNR

Corollary 2 (The Effect of SNR on VLP Error Bound): The 102 ¢ . G - T ;
UE location and orientation estimation error bounds scale with L O PASS-achieved UE location estimate | |
o 1VEr- \ : wine ms r- as SNR — ~c. ' L — = = UE location CRLB |
receiver-end SNR 1n the following manner: : 10'} s AR .

t-I'aCE(Bx(X: ll)) . f)(SNR_I).J (35) —— UE orientation CRLB
. _ ¢ 1
trace(Bu(x,u)) ~ O(SNR™). (36)

=4
i

VLP Error [m]

Corollary 2 (The Effect of SNR on VLP Bias)

;..4..&%_“‘“.44 PR

SNR [dB]

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(2) Effect of Resource Factor

* The effect of transmission distance

Corollary 1 (The Effect of Transmission Distance on VLP 102
Error Bound): The VLP error bounds scale with the transmis- :
sion distance between the LED and UE as*

; LOS-based location AMSE &
.| 0S-hased arientation AMSE S5.° -

— 10" F I ’
5 E -
¥ d s
traﬂe(Bx(K-. ll)} ™~ Q(ﬁ'max)-. (33) E L.OS-based VL.P bias '_i"
¥ J / ® L | 4
trace(B,(x,u)) ~ O(pt ), (34) E ;R ;
- o
£
. . - _ k]
g . _ - T - . — = — i o
aS Pmin >0, in which pin min{p,,[vm € Q} and - q
Pmax = max{pm,|vm € Q}. © =
8
o

NLOS-based location CRLB B
NLOS-based orientation CRLB 57

caused by Path loss and resolution

1 The length of room [m] 1

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(2) Effect of Resource Factor

* The effect of the number of LED sources
Corollary 4 (The Effect of LED Set S.r‘zebcm CRLB): Assume 10°

the LEDs are uniformly distributed within the room. The UE 0 o
location and orientation error bounds scale with the number 1
. . — 10 F -
of LEDs (|€2]) in the following manner: as |£2| — oo, E
o 5
trace(Bx(x,u)) ~ O(|Q71), (37) 5
15«.' E T
¥ —1 D
trace(B,(x,u)) ~ O(|Q2 7). (38) 5 b S
o [k
w 1
5 1!3'1; ss-'*_ \s\
...... N
£ $ IR
E 2 \'*-. e -
R T [EEE bt ]
1{}_3 1 L 1 1 .
0 20 40 G0 80 100

The number of LEDs

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
Communications, Vol. 19, No.7, 2020, pp. 4863-4878



(2) Effect of Reflection Channel

* The effect of reflection rate

Corollary 9 (The Effect of Reflection Coefficient on NLOS- 035 ! ' [ —— _
. _ . 3 T . + | —&— LOS-based location AMSE &5, ]
iB.agSj VLP Pe?;fﬂfmﬂ;gce,}. The NLO§ based VLP error bounds e NLOS based location CRLB F1 .
B (x,u) and B 7 (x, u) scale with the NLOS-path reflec- | | = ®— LOS-based crientation AMSE /%
tion coefficient as follows, as [[g|[s — oo:!! E 095 | =2 NLOS based orientation CRLE By b
. % ’ - f’-
tl‘a-CE(?B:TOS(X, u)) ~ O] f,’JHZszl, (68) é , 1 e’
: s . = 02|
tra.t:e[:?B?llm(X,u)] ~ O(||pllz ). (69) -2 ,E"f/ prid
o L - -
. -4
Corollary 10 (The Effect of Reflection Coefficient on LOS- s 7 /E"'/ oG
Based VLP Performance): The LOS-based VLP error bounds E ol // e
2B (x, 1) and B'%(x, u) scale with the reflection coefficient g | J e
/ ) / ) ! ] ,-E'-r
strength | |2 in the following manner, as |[gp|2 — oco: 0.05 | a/ e |
los Y4 [PHIE: - - |
t.race(.‘Bx (x, u)) ~ O(|pll3) (70) e e it it it i
t-race(.‘BlL?S{xg u)) ~ O(|p| %) (71) 01 02 03 04 05 06 07 08 09 1

Reflection coefficient

[2] B. Zhou, Y. Cao, and Y. Zhuang, “On the Performance Gain of Harnessing Non-Line-Of-Sight Propagation for Visible Light-Based Positioning,” IEEE Transactions on Wireless
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(3) Information Alignment

e LOS channel-based CRLB on unbiased error

—1
Ex (X, l.l) = ( SNR - Dx(}{, 1.1) — X prior ) . (18)
N e
Observation information 2™

L. -
T

Total location information J x(x.u)

~1
Bu(x,u):( SNR - Dy (x, u) +Upﬁcr) . (19)

W

Z-axis

Observation information Hfjhs

L. &
W

Total orientation information 7 (x.,u)

Dy(x,u) = Hx)Ku)F(x,u)(K) (H(x))", (0 |
Du(x,u) = R(u)(G(x) TV (x,u)G(x)R (u), (1) Y-axis X-axis

Definition I (Information Ellipsoid): Given an information
matriX P, 1ts information ellipsoid Ep, 18 defined as the
set of points Ep, = {x € Rz Py.me = 1}. ]

[1] B. Zhou, A. Liu, and V. Lau, "Performance Limits of Visible Light-Based Positioning Using Received Signal Strength Under NLOS Propagation”, IEEE Transactions on Wireless
Communications, Vol. 18, No.11, 2019, pp. 5227-5241



(3) Information Alignment

* localization cooperation => Information aggregation

e Spatial cooperation, multi-sensor fusion, mobility tracking

Z-axis

| ’ .. . |
LV lexisting /

( f]Ll gl f“l\;l.ﬂlﬂﬂ,-

e e r |'2-‘_._ v 1 . .13 1
{ Y e |. . . (1] +

r. . BN ’
l \"l\-'1 1“ L= € n] }HU ‘] 1I..."i?.-|i'!". \-:'/I_S:.i'll.lzl; "I

dated ellipsoid Ep

A id]L](}Tlgll ellipsoid &p,, [)\a:mg )
' : i (3) y1
Aa{d .

3

( u r.udata;d J’_

: | <
~ 10
_,_,-o-""'{
— Eﬂ;li

(1:3) \_—< . (2) 1
rall (Am@fd‘ﬁ}e ('}Lt]:dated )z {}"updated }E
,,;.x"‘ ™
-10 )
X-axis




(3) Information Alignment

e Optimal cooperation => Best information alignment
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(3) Information Alignment

e Optimal cooperation => Best information alignment
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(4) Mobile UE Tracking



(4) Mobile UE Tracking

* Instantaneous UE tracking Problem formulation

PuLp @ (X;,0;) = argmax p(Xy, us|zyy, X1, Ury),  (12)
Xp, Uy

p(Xe, Xy, u;) = -"\"r(xr Xt )(prior)-"\"r(uf luy, Uprior)ﬁ (15)

o

Inertial prior model

P(Z; X¢, up) = | l «"'\"r(zm,f | (Xe,0p ), @). (17)

mel);
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(4) Mobile UE Tracking

* Our Goal
 Establish error bounds for Instantaneous UE tracking error

E, {lI% — x5} > trace(By, (x:, u;)), (18)
E,, {6, — w13} > trace(B,, (x;. u)). (19)
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(4) Mobile UE Tracking

* Instantaneous UE tracking error bounds

Theorem 1 (Single-Time-Slot CRLB): At the fth time slot, 1) Prediction Information: The overall prediction informa-
, . S . ; atricae w0 . o - . r
the CRLBs By, (X, u;) and By, (xX;,u;) of UE location and tion matrices X7y, and Upred*r are given by

orientation, respectively, are given by

1 Xared._r = Xprior T (Xt_relns + By, (0t })_I : (22)
By, (Xr, ll;) = ( ?}NF{ - Dy, (Xf, llr) + X ;red,r ) ’ Prediction information Xproci
i}bservation Information HEFS O:.rerall prediction inf{:;matiun of UE Iﬂcati;n
Total location info;mation T xg (xt,ur) 50) Sred._r = Upri{}r + _(Uﬂéns + By, (ar—1 })—1 . (23)

Prediction information Upyeq

1
Bu, (Xr,ur) = ( ?NH - Dy, (Xe,ur)  + UEred*r ) >

Overall prediction information of UE orientation

Observation information Hg-®

g

Total location information 7y, (x;,u;)

The essence of time-domain localization cooperation in mobile UE tracking is the propagation and aggregation
of localization information, in an information-theoretic view.



(4) Mobile UE Tracking

e Evolution of VLP information/error

By = (H + Xprior + (Xirans + Bx ) ), (32)

_ —1y—1
By, = (HEPS+Uprior+(Utr;ns+ Bu;_l) ) . (33)

Theorem 2 (Convergence of TDEE): If Al and A2 are
satisfied, UE location and orientation error bounds By, and
B,, must converge to two certain fixed points B and By in

S, respectively, at linear convergence rates, as f — 00, i.e..>
. 1By — By, llF |
lim —L "M ]k € (0, 1), (36)
(=00 || By, — Bx;_] | F
. By — By llF
lim —t 2 | — ey € (0, 1), (37)

[—00 HBu,r — Bu_r_| ”F
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(4) Mobile UE Tracking

e Evolution of VLP information/error

Theorem 4 (Monotonically Non-Increasing Of TDEE):
the observation information matrices ‘Hﬂbs and HOhS are non-
decreasing over time and bounded t[-::-m above by their limit
states ’Hdbs and HOPS| respectively, i.e.,

o (BI) H2®S < HPS < H®S Vi > 0,
. (B2) Hfﬂ&)f’] < HPS < HﬁEﬁ Vi > 0,

then the VLP error bounds By, and B, are both monotonically

non-increasing over time. i.e..
By, < By,_,, Yt=10 (40)
By =< By, Yt>0. (41)

Location CRLB [m?]

10

10

Real time locatlcm CRI B th

Hu( tuation 1(01()11 of 51 able wl ate b
(111( to U E move m( nt :
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(4) Mobile UE Tracking

* VLP Error Evolution: steady state

0.08 _.............‘.V.'e.u.}-'flfﬂ.lg .'?.iL............E‘HL.‘..*-. .':.-,IH,H__::,#/»' // i
| ; : -
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Theorem 3 (Closed-Form Stable State Of TDEE): If Al and . '...‘..T:..‘..‘..:..‘;..T.::.Eﬂ..‘..f;:..‘..;.:.‘,"g.\i.:.T.:.‘..T.ﬁ..‘..‘
A2 are satisfied, the closed-form expressions of the stable ; ,-fv{\/ LNy g
states (limit points) B} and B of By, and B,,. respectively, 002 ,H*L:\
OD l 0.65 0?1 0.I15 0.2
as t — o0, are given by e
| _1 1 LN L I N D
* ) 3 i 1 3 p) —1 L o T AL L]
By = 5 Xtrans (I3+4Xtrans (HX*) Xtrans) Xtrans ™ 5 Xtrans ° Jhb ‘1'3
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System Configuration

Intuition:
* VLP error bounds dependent on resource factors
* Performance limits of VLP systems can be fundamentally improved via

B,(x,u) = ( SNR-D,(x,u) + X prior ) . (18) By, Cﬁlulb(bandmdthjl, as bandwidth — 0
N — —
Observation information 7" ) B, ~ scaling(NLOS interference), as NLOS interference — 0

T

Total location information 7« (x.u)

—1
Bu(x?u}:( SNR - Dy, (x, u) +L‘pﬂ-m) . (19)

H‘:“-Ikﬁ ~ maling‘(channel varianr:e), as channel variance — 0

e

Observation information H5™ Bﬂ,_.k. o~ E‘;CEJing(RSU state err::.r), as RSU state errar — 0

L -
e

Total orientation information J (x.,u)
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(1) Resource Allocation

 Solution 1: Upper bound minimization

e Upper Bound Minimization: The first method is
to minimize the associated CRLB via worst-case min-
imization. In such a case, sensing-driven ICAS power
allocation can be formulated as

p = argmin max trace(Bg(p:B)).  (60)
p

s.t. [|plle = 1. (61)

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and
Sensing,” China Communications, 2023.



(1) Resource Allocation

 Solution 2: Stochastic Average

e Statistical Average: If prior knowledge of vehicle 3
. . . . f p(." [r]) ; :
state is available, e.g., from inertial measurements or » Bi(p) = 3 Bs(p; .fj[f]].- (66)
GPS, RADAR, etc, the following statistical average of i=1:Ng q(; [";.)
CRLB over prior knowledge can be used,
Byo) = [ n@Bapis) 08 62
ﬁ( ) (B)Bps( ) p = arg nEntrac-.e(Bfi(p})‘ (63)
s.t. [|pll2 =1, (64)

where p(/3) denotes the prior distribution of /3.
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(1) Resource Allocation

* Solution 3: Alternate Optimization

e Alternating Optimization: This approach is to
use a hybrid criterion-driven optimization objective
for guiding alternating iterations between resource pa-
rameter and state variable,

[ Presource . P* = argmin t.1‘ace(B;:;(f3"*'._ P)),
p

e

1l (alternating iterations) 1|
P&aeusirlg : ,-S* = arg 111}11 ||*Z - g{@. p*) ||3

“

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and
Sensing,” China Communications, 2023.
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(2) Localization Beam Tracking

* Generate a sensing beam to continuously cover the vehicle

U= arg 111L'1I11 111531:-:{ trace (HKUE (U;3)), By (U B) },

s.t. [|Ulfs = 1. (67)
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(3) Communication vs Sensing

* Comm & Sensing performance tradeoff via budgeting resource

Nt = arg 11'\1_111 o(Nt, Ngr), (68)
NT

s.t. N1 + Nr = Niotal. (69)

Nt >0,Ng >0, (70)

trace (Bxyy, (Nt. Nr))
R(Nr)
R(Nt) = Byiamn (1 +que(Nt)),  (72)

o( N7, Ng) = (71)

Shanshan Ma, and Bingpeng Zhou, “Asymptotic Performance Limits of Vehicular Location and Velocity Detection towards 6G mmWave Integrated Communication and
Sensing,” China Communications, 2023.



Conclusion

* Demand end: intelligence-driven communication and sensing

e Supply end: consistent software and hardware

 Solution: integrated VLC and sensing

e Challenge: NLOS, fading, non-convex nature, resource allocation

* Our work:
* Robust VLP algorithm design: stochastic sampling, VLC-assisted VLP, DL-driven VLP
* Insightful analysis: closed-form error bound, the effect of resource and fading
 Dynamic resource management: resource, beam tracking, C&S tradeoff

* Environment interference of VLP can be reduced via elegant cooperation
between communication and sensing.



Future works

* Model based + data driven VLP
e UD velocity detection
* Multi-Target Detection

* Communication + localization for VLC
* Multiband aggregation for VLP
* Beam Focusing for near-field VLP
* Sensing-assisted communication
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