
 
Abstract—We propose a novel channel estimation technique for 

intensity modulation/direct detection (IM/DD) based orthogonal 
frequency division multiplexing visible light communication 
(OFDM-VLC) systems, utilizing sparse Bayesian dual-variate 
relevance vector machine (RVM) regression. By exploiting sparse 
Bayesian framework, dual-variate RVM regression can provide 
accurate estimation of the real and imaginary parts of the 
complex channel response, and therefore the channel response 
can be estimated to perform channel compensation. Simulation 
results show that a 200 Mb/s OFDM-VLC system using sparse 
Bayesian RVM regression based channel estimation with only one 
complex training symbol (TS) achieves nearly the same bit error 
rate (BER) performance as the system using conventional time 
domain averaging (TDA) based channel estimation with a total of 
20 complex TSs, indicating a significant reduction of training 
overhead. Moreover, by employing a fast marginal likelihood 
maximization method, the sparse Bayesian RVM regression based 
channel estimation can be computational efficient for practical 
application in high-speed OFDM-VLC systems. 

 
Index Terms—Orthogonal frequency division multiplexing; 

visible light communication; channel estimation; sparse Bayesian; 
relevance vector machine 
 

I. INTRODUCTION 
White light-emitting diodes (LEDs) enabled visible light 

communications (VLCs) have attracted ever-increasing interest 
in recent years, owing to its advantages such as license-free 
spectrum, cost-effective front-ends, high security, and strong 
immunity to electromagnetic interference [1]–[3]. VLC using 
LEDs is very promising for many practical applications such as 
indoor wireless communications, localization or positioning, 
networking, and sensing [4], [5]. Although VLC is considered 
as a promising technology for future indoor communications, 
the development of high-speed VLC is very challenging as the 
modulation bandwidth of white LEDs is inherently small. The 
3-dB modulation bandwidth of a commercially available white 
LED is typically a few MHz [6]. In order to increase the data 
rate of bandwidth-limited VLC systems, many techniques have 
been reported so far, including pre- or post-frequency domain 
equalization [7], [8], multiple-input multiple-output (MIMO) 
transmission schemes [9], [10], spectral-efficient modulation 
formats such as orthogonal frequency division multiplexing  
 
 

 
(OFDM) utilizing high-order quadrature amplitude modulation 
(QAM) constellations [11]–[13]. 

The channel response of an OFDM based VLC system using 
intensity modulation/direct detection (IM/DD) largely depends 
on the low-pass nature of the LED transmitter [7], [14]. In order 
to correctly recover the transmitted data, the response of the 
channel should be accurately estimated and hence compensated 
at the receiver side. Conventional time domain averaging (TDA) 
technique employing multiple training symbols (TSs) has been 
widely adopted for channel estimation in OFDM-VLC systems 
[11], [15]. Recently, many new channel estimation techniques 
have also been reported in the literature. In [16], a post- 
processing channel estimation technique was proposed which 
could eliminate the noise outside the maximum channel delay. 
In [17], the authors introduced an adaptive channel estimation 
technique which is robust to the changes in channel distribution 
and SNR range. In [18], three different channel estimation 
techniques were investigated and compared, including intra- 
symbol frequency-domain averaging (ISFA), minimum mean 
squared error (MMSE), and weighted inter-frame averaging 
(WIFA). Nevertheless, multiple TSs are generally required for 
accurate estimation of the channel response, which inevitably 
reduces the overall achievable data rate of bandwidth-limited 
OFDM-VLC systems due to the large training overhead. 

In this paper, for the first time, we propose a novel channel 
estimation technique based on sparse Bayesian dual-variate 
relevance vector machine (RVM) regression for bandwidth- 
limited OFDM-VLC systems. As a machine learning method, 
RVM could perform accurate predictions in a probabilistic 
manner with only a limited number of training symbols (TSs) 
[19]–[21]. By exploiting dual-variate RVM regression, the real 
(Re) and imaginary (Im) parts of the complex channel response 
can be accurately estimated. Compared with conventional TDA 
based channel estimation, the required training overhead can be 
significantly reduced by utilizing the proposed sparse Bayesian 
dual-variate RVM regression based channel estimation.  

The rest of the paper is organized as follows. Section II 
describes the model of an indoor IM/DD based OFDM-VLC 
system using sparse Bayesian RVM regression based channel 
estimation. The simulation setup and results are presented in 
Section III. Finally, Section IV gives the conclusion. 
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Fig. 1.  Block diagram of an IM/DD OFDM-VLC system using sparse Bayesian 
RVM regression based channel estimation. 
 

Notation: (·)T and (·)-1 denote the transpose and the inverse 
operators, respectively. diag(·) stands for a diagonal matrix 
whose diagonal elements are the values given inside the round 
brackets. Non-boldface italic letters, lowercase boldface letters 
and capital boldface letters represent scalars, vectors and 
matrixes, respectively. 

II. IM/DD OFDM-VLC USING SPARSE BAYESIAN RVM 
REGRESSION BASED CHANNEL ESTIMATION 

The model of an indoor IM/DD based OFDM-VLC system is 
described and the principle of sparse Bayesian RVM regression 
is also introduced. Moreover, the proposed channel estimation 
technique using dual-variate RVM regression is discussed. 

A. System model 
Fig. 1 shows the block diagram of an IM/DD OFDM-VLC 

system, where the serial input data are first converted to parallel 
data via serial-to-parallel (S/P) conversion. The parallel data 
are then mapped to quadrature amplitude modulation (QAM) 
symbols and training symbols (TSs) are also added. To obtain 
an LED-compatible real-valued signal, Hermitian symmetry is 
imposed before performing the inverse fast Fourier transform 
(IFFT). After cyclic prefix (CP) insertion, the resultant parallel 
and digital signal is converted to a serial and analog signal via 
parallel-to-serial (P/S) conversion and digital-to-analog (D/A) 
conversion. A DC bias current is further added so as to obtain a 
unipolar signal for modulating the intensity of an LED. The 
LED light modulated with data emits into the free space for 
simultaneous illumination and communication in the indoor 
environment. Usually, there are two types of light components 
received by the photodiode (PD): one is the line-of-sight (LOS) 
component, and the other is the diffuse components due to the 
reflections from the surfaces in the room. It has been shown that 
the strongest diffuse component is at least 7-dB lower than the 
weakest LOS component in electrical power [9]. Therefore, it is 
reasonable to only consider the LOS component in the system 
model. The LOS irradiance of an LED can be modeled as a 
generalized Lambertian pattern [12] and thus the LOS optical 
channel gain is calculated by (1). 

h = 
(m+1)A

2πd2 cosm(φ)GfGl cos (ϕ) .           (1) 

 
In (1), m = –ln2/ln(cosΦ1/2) is the Lambertian emission order 
and Φ1/2 is the semi-angle at half power of the LED, A is the 
active area of the PD, d is the distance between LED and PD, φ 
is the angle of irradiance, ϕ is the angle of incidence, Gf is the 
gain of the optical filter, and Gl is the gain of the optical lens. It 
should be noted that h becomes zero when the incident angle ϕ 
is outside the field-of-view (FOV) of the optical lens. After 
transmission over the free-space channel, the light is detected 
by a PD and the DC term is removed. The resultant electrical 
signal is given by 
 

y(t) = RP0hξx(t) + n(t),                            (2) 
 
where R is the responsivity of the PD, P0 is the output optical 
power of the LED without modulation, h is the channel gain, ξ 
is the modulation index, x(t) is the transmitted OFDM signal 
with normalized electrical power, and n(t) is the additive white 
Gaussian noise (AWGN) consisting of both shot and thermal 
noises. In the OFDM receiver, the received electrical signal is 
first converted to a digital and parallel signal via analog-to- 
digital (A/D) conversion and S/P conversion. After FFT, the 
proposed sparse Bayesian RVM regression enabled channel 
estimation is then executed and frequency domain equalization 
(FDE) is further performed by utilizing the estimated channel 
response. Hence, the output data can be obtained through QAM 
de-mapping and P/S conversion. 

As per (2), the signal-to-noise ratio (SNR) of the received 
OFDM signal is expressed by 
 

SNR = 
(RP0hξ)

2

σshot2 +σthermal2 .                         (3) 

 
In (3), σshot2  and σthermal2  are the variances of the shot and thermal 
noises, respectively, which are defined as [12] 
 

σshot2
 = 2q(RPr + IbgI2)Bn                       

σthermal2
 = 8πkTKηAB2 I2

G
+

2πΓ
gm

ηAI3Bn
,        (4) 

 
where Pr = hP0 is the average received optical power, Ibg is the 
background current, Bn is the equivalent noise bandwidth. The 
other parameters in (4) can be found in [1], [12]. 

B. Sparse Bayesian RVM regression 
Based on the probabilistic sparse Bayesian RVM regression 

model [19], for a given training set of real-valued input-target 
pairs {xn, zn}n=1

N , the target samples {zn}n=1
N  can be predicted by 

using the following linear regression model: 
 

zn  = wiϕi(xn)
M

i=1

 + ϵn = wTϕ(xn) + ϵn.          (5) 
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In (5), w = (w1 w2 ··· wM)T  is the weight vector of length M, 
ϕi(xn) (i = 1, 2,···,M) is the basis function generated by input xn, 
ϕ(xn) = (ϕ1(xn) ϕ2(xn) ··· ϕM(xn) )

T  is the corresponding basis 
vector, and ϵ = (ϵ1 ϵ2 ··· ϵM)T is the additive error vector. The 
error sample ϵn (n = 1, 2,···, N) is assumed to be independently 
distributed Gaussian with zero mean and a variance of σ 2, i.e. 
p(ϵ) = N ϵn 0,σ 2N

n=1 . Therefore, the likelihood function of 
the target vector z is expressed by 
 

p z w,σ 2  = (2πσ 2)–N/2exp –
z-Φ(x)w 2

2σ 2 ,    (6) 

 
where (x) = [ϕ(x1) ϕ(x2) ··· ϕ(xN)]T  is the N × (N + 1) design 
matrix and ϕ(xn) is the biased basis vector which is given by 
 

ϕ(xn) = [1 K(xn,x1) K(xn,x2) ··· K(xn,xN)]T.      (7) 
 
Therefore, the length of ϕ(xn) is M = N + 1 and K(x,xn) is the 
kernel function. One of the widely used kernels is the Gaussian 
kernel which is defined as  
 

K(xm,xn) = exp (–λ–2 xm  – xn 2) ,                   (8) 
 
where λ is known as the width parameter.  

From the Bayesian perspective, we constrain the parameters 
by defining a zero-mean Gaussian prior distribution over them 
which takes the form 
 

p w α  = N wi 0,αi–1 ,
N

i=0

                      (9) 

 
where α = (α0 α1 α2 ··· αN)T  is a vector of N + 1  independent 
hyperparameters and each one is used to individually control 
the strength of the prior over its associated parameter [19]. 
Based on the likelihood and the prior, the posterior distribution 
can be obtained via the Bayes Rule 
 

p w z,α,σ 2  = 
p z w,σ 2 p w α
p z α,σ 2 ,             (10)

 
which is Gaussian distributed N(μ, Σ) where the mean and the 
covariance matrix are given by, 
 

Σ = σ –2ΦTΦ + diag(α)
–1

,             (11) 
  

 = σ –2ΣΦTz.                               (12) 
 
Since it is generally intractable to obtain the full posterior of 
those parameters, a type-II maximum likelihood procedure can 
be used to find a most-probable point estimate αMP. Therefore, 
sparse Bayesian learning is then formulated as the local 
maximization with respect to α of the marginal likelihood [19] 
and the logarithm of the marginal likelihood is given by (13). 

  
 
Fig. 2.  Schematic diagram of the proposed sparse Bayesian dual-variate RVM 
regression based channel estimation. 
 

log(p z α,σ 2 ) = log p z w,σ 2 p w α
∞

–∞
dw,  

= – (Nlog2π + log C  + zTC–1z)/2.   (13)  
 
In (13), C = σ 2I + Φ diag(α) –1ΦT and I is an identity matrix.  
Hence, the estimate of μMP for the weights is given in (12) with 
α = αMP and thus the final approximator of target z is given by 
z = Φ(x)μMP. It has been shown that the optimal values for most 
of the hyperparameters are infinite and hence μMP will consist 
of a few non-zero elements [19]. 

The original RVM regression model as proposed in [19] is 
initialized with all the M basis functions. The update rules for 
the hyperparameters depend on computing the posterior weight 
co-variance matrix as given in (11), which requires a matrix 
inverse operation with a complexity of O(M 3). Therefore, the 
computational complexity of RVM regression could be rather 
high for practical applications. To reduce the computational 
complexity, a fast marginal likelihood maximization method 
was further proposed, where RVM regression is initialized with 
a single basis function, i.e. the bias [22]. Sequentially, the basis 
functions are iteratively added, updated or deleted to increase 
the marginal likelihood in a greedy manner. In this way, the 
computationally expensive matrix inversion operation can be 
appropriately avoided. Therefore, the new RVM regression 
model can achieve almost the same performance as the original 
one but with significantly reduced computational complexity. 
The implementation of such a fast RVM regression model 
using MATLAB is available in [23]. In this work, the fast RVM 
regression model is adopted and the computational complexity 
is analyzed in detail in Section III. 

C. Channel estimation using dual-variate RVM regression 
Since the sparse Bayesian RVM regression introduced above 

is a real-valued model, it cannot be directly applied to estimate 
the complex-valued channel of an OFDM-VLC system. In this 
subsection, we propose a sparse Bayesian dual-variate RVM 
regression based channel estimation technique for OFDM-VLC 
systems. Fig. 2 shows the schematic diagram of the proposed 
channel estimation technique. In order to estimate the channel 
response, one OFDM symbol consisting of totally N complex 
coefficients corresponding to N subcarriers is used for training.  
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Fig. 3.  (a) Channel response with a modulation bandwidth of 50 MHz used in 
the simulation (b) electrical spectrum of the received OFDM signal. 
 
The transmitted and received TSs are given by y = yre+ jyim and 
y' = y're+ jy'im, respectively. It is assumed that the real (Re) and 
imaginary (Im) parts of the transmitted TS y are the same, i.e. 
yre= yim. As per (8), the design matrix Φ is generated by using 
yre and yim. After separating the Re part and the Im part of the 
received TS y', the responses of the Re and Im parts of the 
complex channel are obtained by hre= y're/yre and him= y'im/yim, 
respectively. Taking hre and him as two inputs and utilizing the 
design matrix Φ, sparse Bayesian dual-variate RVM regression 
can be performed and the estimated responses of the Re and Im 
parts of the complex channel, i.e. fre and fim, can be obtained.  

Based on the transmitted and received TSs, i.e. y and y', the 
complex channel response is expressed by 
 

h = 
y'
y

=
y're+ jy'im
yre+ jyim

.                           (14) 

 
Using yre= yim, (14) can be rewritten as 
 

h = 
y're+ jy'im
yre(1+ j)

 = 
y're+ y'im– j(y're– y'im)

2yre
.   (15) 

 
Therefore, we have 
 

h = 
1
2

[hre+ him– j(hre– him)].                (16) 
 
Since fre and fim are respectively the estimates of hre and him, 
the estimated complex channel response f is obtained by 
 

f =
1
2

[fre+ fim– j(fre– fim)].                 (17) 
 

Based on the above estimated complex channel response, FDE 
can be successfully performed. 

III. SIMULATION SETUP AND RESULTS 
In this section, Monte Carlo simulations are performed to 

evaluate the performance of an IM/DD OFDM-VLC system 
using sparse Bayesian dual-variate RVM regression based 
channel estimation. In the simulation, a commercially available 
white LED (Luxeon Star) is considered. Fig. 3(a) shows the 
measured channel response of the LED after blue filtering with 
50 MHz modulation bandwidth. As we can observe, the power  

 
 
Fig. 4.  Constellation diagram of the transmitted OFDM signal. Blue ‘+’ signs 
show the constellation points of the 16QAM encoded data while red ‘×’ signs 
give the constellation points of the complex training data of the TS. 
 
attenuation is up to 15 dB. The OFDM signal has an IFFT/FFT 
size of 256 and a CP length of 8. The 1st subcarrier is 
corresponding to the DC term and totally 64 subcarriers (2nd ~ 
65th, N=64) are used to carry data. The 66th ~ 128th subcarriers 
are left unmodulated for oversampling. The sampling rate is set 
at 200 MSa/s and 16QAM mapping is used. Hence, the overall 
bit rate of the OFDM-VLC system is 50×log216 = 200 Mb/s. 
Fig. 3(b) illustrates the electrical spectrum of the received 
OFDM signal and totally 500 OFDM symbols are transmitted 
and collected for BER calculation. 

As discussed in Section II.C, only one complex TS is needed 
when using the proposed sparse Bayesian dual-variate RVM 
regression based channel estimation technique. Moreover, the 
Re and Im parts of the TS should be the same. Fig .4 depicts the 
constellation diagram of the transmitted OFDM signal. It can 
be found that the constellation points of the 16QAM encoded 
data are shown by the blue ‘+’ signs while the red ‘×’ signs give 
the constellation points of the complex training data in the TS. 
The Re and Im parts of the complex training data are the same, 
which are assumed to be uniformly distributed between 1 and 2. 
Using the OFDM signal described in Fig. 4, the design matrix is 
generated by the Gaussian kernel given by (8) and the width 
parameter is set to 1. Since the basis functions are iteratively 
added, updated or deleted to increase the marginal likelihood, 
we assume that the maximum number of iterations is 10. After 
obtaining the responses of the Re and Im parts of the complex 
channel by exploiting the TS, dual-variate RVM regression is 
performed to achieve the amplitude responses of the Re and Im 
parts of the complex channel. Figs. 5(a) and (b) illustrate the 
estimated amplitude responses of the Re and Im parts of the 
complex channel, respectively, with an SNR of 20 dB. As we 
can see, the amplitude responses are severely distorted before 
regression because of the additive noise while the amplitude 
responses become much smoother after regression. Moreover, 
there are only three relevance vectors (RVs) used in the RVM 
regression for both the Re and Im parts, indicating that only 
three out of totally 65 weights (M = N +1= 65) are nonzero. 
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Fig. 5.  Amplitude response of (a) real part and (b) imaginary part of the channel 
with an SNR of 20 dB. RVs: relevance vectors. 

 
The estimated channel responses using conventional TDA 

based channel estimation and the proposed sparse Bayesian 
dual-variate RVM regression based channel estimation are 
compared in Fig. 6. It can be clearly observed that the estimated 
channel response is least accurate when TDA with one TS is 
used. With the increase of the number of the TSs, the estimated 
channel response employing TDA becomes more accurate. In 
contrast, the channel response can be accurately estimated by 
using sparse Bayesian dual-variate RVM regression technique 
with only one TS. Fig. 7 shows the mean square estimation 
error versus SNR for the 16QAM based OFDM-VLC system. It 
can be seen that the mean square estimation error is gradually 
reduced with the increase of SNR. Moreover, the mean square 
estimation error using conventional TDA is decreased when 
more TSs are utilized. It is also revealed that nearly the same 
mean square estimation error performance can be achieved for 
conventional TDA based channel estimation with 20 TSs and 
sparse Bayesian dual-variate RVM regression based channel 
estimation with only one TS. 

The BER performance of the 16QAM based OFDM-VLC 
system is shown in Fig. 8. To achieve a target BER of 10-3, the 
required SNR using the actual channel information is about 
21.4 dB. When conventional TDA based channel estimation 
with one TS is used, the required SNR for achieving BER=10-3 
is about 26 dB, resulting in an SNR penalty of 4.6 dB due to the 
inaccurate channel information. When more TSs are used for  

 
 
Fig. 6.  Comparison of actual and estimated channel responses (SNR=20 dB).  
 

  
 
Fig. 7.  Mean square estimation error versus SNR for 16QAM based OFDM- 
VLC system with different channel estimation techniques. 
 

  
 
Fig. 8.  BER versus SNR for 16QAM based OFDM-VLC system with different 
channel estimation techniques. 
 
TDA based channel estimation, the SNR penalty is reduced. 
For example, when five TSs are used, the SNR penalty can be 
reduced to 1.1 dB. Moreover, when total 20 TSs are used, the 
SNR penalty becomes negligible (~ 0.4 dB). In contrast, the 
SNR penalty is only about 0.2 dB when using sparse Bayesian 
dual-variate RVM regression based channel estimation with 
only one TS. As a result, the required number of TSs is reduced 
from 20 to 1 for accurate channel estimation when employing 
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the proposed channel estimation technique in comparison to 
conventional TDA, indicating a substantially reduced training 
overhead in bandwidth-limited OFDM-VLC systems. 

Finally, we analyze the computational complexity of the 
proposed sparse Bayesian dual-variate RVM regression based 
channel estimation technique. For the original RVM regression 
model as proposed in [19], the computational complexity is 
related to both the iteration number Nit and the number of basis 
functions M. An inverse operation with a complexity of O(M 3) 
is required to compute the posterior weight co-variance matrix 
so as to update the hyperparameters at each iteration. Therefore, 
the computational complexity of the original RVM regression 
is O(Nit  × M 3) with a memory storage of O(M 2). However, for 
the fast RVM regression which is adopted in this work [22], a 
fast marginal likelihood maximization method is used, where 
RVM regression is initialized with the bias only and the basis 
functions are iteratively added, updated or deleted to increase 
the marginal likelihood. In the worst case, a new basis function 
is added at each iteration since adding basis functions requires 
most of the computations. Hence, the worst-case computational 
complexity of the fast RVM regression is O(Nit  × M 2) [22]. It 
should also be noted that the worst case scenarios are highly 
impossible to occur. For common cases, an approximation of 
the computational complexity is about O(Nit×NRV 2 ) where NRV 
is the number of RVs. In our numerical simulations, only three 
out of totally 65 basis vectors are used as RVs, suggesting a 
substantially reduced computational complexity. 

IV. CONCLUSION 
We have proposed a channel estimation technique based on 

sparse Bayesian dual-variate RVM regression in a 200 Mb/s 
OFDM-VLC system. The performance of the proposed channel 
estimation technique has been evaluated and compared with the 
widely used TDA technique by numerical simulations. The 
simulation results have shown that, to accurately estimate the 
channel response, totally 20 complex TSs are required when 
using conventional TDA based channel estimation, while only 
one complex TS is needed when the proposed sparse Bayesian 
RVM regression based channel estimation is employed. Hence, 
a significantly training overhead reduction can be achieved, 
resulting in an improved spectral efficiency in bandwidth- 
limited VLC systems. It has also been demonstrated that, by 
adopting the fast marginal likelihood maximization method, the 
sparse Bayesian RVM regression based channel estimation can 
be computational efficient for the practical application in high- 
speed OFDM-VLC systems.  
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