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Energy-Efficient UAV enabled Data Collection via
Wireless Charging: A Reinforcement Learning

Approach
Shu Fu, Yujie Tang, Yuan Wu, Ning Zhang, Huaxi Gu, Chen Chen, and Min Liu

Abstract—In this paper, we study the application of unmanned
aerial vehicle (UAV) for data collection with wireless charging,
which is crucial for providing seamless coverage and improving
system performance in the next generation wireless networks. To
this end, we propose a reinforcement learning based approach to
plan the route of UAV to collect sensor data from sensor devices
scattered in the physical environment. Specifically, the physical
environment is divided into multiple grids, where one spot for
UAV hovering as well as the wireless charging of UAV is located
at the center of each grid. Each grid has a spot for the UAV to
hover, and moreover, there is a wireless charger at the center
of each grid which can provide wireless charging to the UAV
when it is hovering in the grid. When the UAV lacks energy, it
can be charged by the wireless charger at the spot. By taking
into account the collected data amount as well as the energy
consumption, we formulate the problem of data collection with
UAV as a Markov decision problem, and exploit the Q-learning
to find the optimal policy. In particular, we design the reward
function considering the energy-efficiency of UAV flight and data
collection, based on which Q-table is updated for guiding the
route of UAV. Through extensive simulation results, we verify that
our proposed reward function can achieve a better performance
in terms of the average throughput, delay of data collection,
as well as the energy-efficiency of UAV, in comparison with the
conventional capacity based reward function.

Index Terms- unmanned aerial vehicle; energy-efficiency; data
collection; reinforcement learning; Q-learning; design of reward
function.

I. INTRODUCTION

This work was supported in part by the National Key R&D Program of
China under Grant 2018YFE0202800; in part by the National Natural Science
Foundation of China under Grant 61701054; in part by the Fundamental
Research Funds for the Central University under Grant 2020CDJQY-A001.
Y. Wu’s work is supported in part by Science and Technology Development
Fund of Macau SAR under Grants 0060/2019/A1 and 0162/2019/A3, in part
by FDCT-MOST Joint Project under Grant 066/2019/AMJ.

Shu Fu is with the School of Microelectronics and Communication En-
gineering, Chongqing University, Chongqing, P. R. China, 400044. He is
also with the State Key Laboratory of Integrated Services Networks, Xidian
University, Xi’an, Shaanxi, 710071, P. R. China. (e-mail: shufu@cqu.edu.cn).

Yujie Tang is with the Department of Computer Science and Math-
ematics, Algoma University, Sault Ste. Marie, ON, Canada (email: yu-
jie.tang@algomau.ca).

Yuan Wu is with the State Key Laboratory of Internet of Things for
Smart City, University of Macau, Macao, China. He is also with the De-
partment of Computer Information Science, University of Macau (email:
yuanwu@um.edu.mo).

Ning Zhang is with the Department of Electrical and Computer Engineering,
University of Windsor, ON, N9B 3P4, Canada (email: ning.zhang@ieee.org).

Huaxi Gu is the State Key Laboratory of Integrated Services Networks, X-
idian University, Xi’an, Shaanxi, 710071, P. R. China. (hxgu@xidian.edu.cn).

Chen Chen and Min Liu are with the School of Microelectronics and
Communication Engineering, Chongqing University, Chongqing, P. R. China,
400044. (e-mails: c.chen@cqu.edu.cn, liumin@cqu.edu.cn).

Corresponding author: Min Liu.

AS the explosive increase in the number of sensors in
physical environments, collecting data from the widely

deployed sensors has become a critical issue to Internet
of Things (IoT) [1–3] and terrestrial-satellite networks [4]
etc. In order to collect the data in physical environment,
sensor devices are distributed to collect the traffic demand,
environment information etc., and put these information into
data blocks for further processing. However, considering the
practical environment constraints, it is infeasible for sensors to
directly communicate with base stations (BSs), e.g., in rural or
mountain areas. Fortunately, unmanned aerial vehicle (UAV)
[1, 5–11] provides an effective approach to collect sensor data,
where UAV can act as a mobile base station (BS) in the air.

Several existing works [12–14] have discussed the typical
application scenarios of UAV assisted wireless networks. In
general, the applications of UAV in data collection can be
categorized into on-line UAV relay between BS and sensors
and the off-line UAV collection of sensor data. For the former
type of applications, UAV will be the mobile relay to enhance
the received signal strength from sensors to BS in real time
[6, 15, 16]. For the latter type, the delay should be insensitive
for sensor data, and sensors can temporarily cache the detected
data as files for transmitting to UAV. In particular, the latter
type of applications can be leveraged in many scenarios such
as geoenvironmental detection, record transaction in IoT, etc.

In this work, we focus on the latter one, i.e. UAV based
off-line data collection. This scenario has been studied from
different aspects to improve the performance of data collection.
Zhan et. al. in [17] jointly optimize the wakeup schedule of
sensors and UAV trajectory to minimize the energy consump-
tion of sensors. Gong et. al. in [18] study the flight time
minimization problem for completing the UAV based data
collection mission in an one-dimensional sensor network. In
practice, UAV does not have the global channel state informa-
tion between sensors and UAV. In addition, the computation as
well as the battery capacity of UAV require low-complexity
solutions without consuming a heavy computational burden.
Machine learning has been recognized as an effective method
to plan the route of UAV. Some works have explored the per-
formance gain brought by machine learning in UAV assisted
wireless networks. Zhao et. al. in [19] propose an improved
Q-learning method [20–22] to achieve UAV navigation and
obstacle avoidance. Wu et. al. in [23] propose a direction-
aware Q-learning algorithm to locate the illegal radio station
by UAV. Bayerlein et. al. in [24] study the throughput maxi-
mization problem in UAV based data collection. However, the
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aforementioned works do not consider the energy-efficiency
of UAV, which may lead to a significant power consumption,
and therefore affect the flight time for data collection.

Motivated by the above observations, in this paper, we
propose an energy-efficient Q-learning approach to plan the
route of UAV for data collection. Q-learning can be modeled
as a Markov decision process (MDP), which can derive the
optimal solution under the probabilistic behavior of a system.
Specifically, we consider a geographical area where a wireless
sensor network is deployed and sensors continuously broadcast
reference signal. Based on the reference signal received power
(RSRP), UAV selects one sensor and receives its data in one
time-slot. The spots in system have multiple hovering height
[25]. UAV can hover over at a specific height of a spot to
collect sensor data. Moreover, to prolong the flight time of
the UAV, we deploy a wireless charger at the center of each
grid, which provides wireless charging to the UAV when it is
in short of energy. Different from the traditional Q-learning
approach focusing on only the system throughput gain, we
consider the energy consumption of UAV flight and propose
an energy-efficiency oriented reward function in this paper.
Based on the reward function, a Q-table will be iteratively
updated to guide the trajectory of UAV while improving its
energy-efficiency.

Starting from a specific spot, UAV will continue moving and
hovering over the spots for data collection based on RSRP of
sensors. In each time-slot, the UAV flies to a spot to collect
data from the sensor in the grid with a certain probability
such that a large Q value can be obtained. In our design of
Q function, we consider both the UAV’s energy consumption
for hovering and flying, and the delay of flying and wireless
charging for powering. As a result, our proposed Q-learning
framework is able to provide an energy-efficient solution for
the UAV’s trajectory optimization.

The remainder of this paper is organized as follows. We
review the related studies in Section II. Section III presents
the system model and the problem formulations. Section
IV presents the Q-learning framework based on the energy-
efficiency of UAV for collecting sensor data. The simulation
results are demonstrated in Section V. We finally conclude the
work and discuss the future directions in Section VI.

II. RELATED WORKS

Reinforcement learning has been widely used in wireless
communications. Nie et. al. in [26] propose an alternative Q-
learning theoretical approach to solve the dynamic channel
assignment problem in wireless networks. The feature of Q-
learning that it does not require the explicit state transition
model to solve the Markov decision problem quickly attracts
researchers’ attentions. This enables Q-learning to adapt the
large state space and action set. Yu et. al. in [27] use Q-
learning to guarantee the traffic QoS for wireless adaptive
multimedia. In recent years, there have been many studies
exploiting the reinforcement learning in different scenarios,
e.g., device-to-device scenario [28] and wireless systems [29],
etc.

As the wireless networks evolve, the parameters and s-
cenarios become more and more complex, which can lead

to the difficulty of the network planning by the traditional
optimization technologies such as convex optimization [4] and
geometric programming, etc. On the other hand, the global
optimal solution is not practical in engineering. Reinforcement
learning provides an effective method to learn the network
actions from the environment. Such a scalability and flexibility
of reinforcement learning cater for the complex network, such
as 5G and Beyond 5G networks, especially as the terrestrial-
satellite system is employed and a more complex network
leading to a large amount of states and actions. Raza et.
al. in [30] proposes a slice admission strategy based on
reinforcement learning in 5G network slicing. Zhang et. al. in
[31] uses the deep reinforcement learning method to provide
proactive caching for the multi-view 3D videos in 5G.

In terms of the applications beyond 5G, UAV-BS is a typical
scenario. Yin et. al. in [32] uses a deterministic policy gradient
based reinforcement learning to generate the trajectory for
UAV. Challita in [33] uses a dynamic game based deep
reinforcement learning to manage the wireless interference
in the scenario of cellular-connected UAVs. Liu in [34] uses
reinforcement learning to achieve the dynamic movement of
multiple UAVs in a wireless network. Dai in [35] studies the
deployment of multiple UAVs in a dynamic environment. Hu
in [36] proposes an intelligent handover control method in
UAV cellular networks by a deep learning method. Li in [37]
surveys the artificial intelligence driven spectrum management
in various wireless networks such as UAV networks, etc.

In terms of energy harvesting, wireless charging can be used
for a timely energy supplement in a UAV based system [38].
Su in [39] employs UAV as a wireless charger to provide
the energy supplement of energy constrained devices. Chai in
[40] proposes an online UAV-assisted wireless caching with
wireless charging.

In the existing works, several aspects of the applications
of reinforcement learning have been proposed in wireless
networks. However, the existing works mostly consider a
scenario with a relatively small number of states or actions.
Different from the existing works, in this paper, we consider
a more practical scenario of the reinforcement learning based
data collection via UAV by accounting for the UAV trajectory,
hovering height, wireless power charging, etc. We also give an
in-depth performance evaluation of the proposed algorithm via
extensive simulations.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system with N grids as shown in Fig. 1,
where J sensors are scatted in each grid. One spot is at the
center of each grid. One wireless charger is configured at each
spot. UAV should hover over the wireless charger at a specific
grid to replenish energy as well as collect sensor data from a
certain sensor device in the system. Although wireless power
charging can prolong the working-period of UAV, the cost
of wireless chargers is an important part of the system cost.
This indicates that the number of wireless chargers should be
decreased. Hence, we assume that the wireless chargers are
configured at each spot to minimize the number of wireless
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Fig. 1. UAV based data collection.

chargers per grid. At each charging point, UAV has nH pre-
determined UAV hovering heights which are denoted by set
F = {F1, F2, . . . , FnH}.

In the system, we assume that the data can only be collected
when the UAV is hovering over a wireless charging device. All
the sensors in the system possess a file with a length of Z bits
for uploading to the UAV. Considering the practical device
capability, we assume that the minimum elevation angle from
an arbitrary sensor to the UAV is αmin. If a sensor has the
elevation angle α < αmin, it cannot be served by the UAV.
This indicates that a larger height of the UAV can have a wider
range with more sensors to select by the UAV. On the other
hand, sensors continously broadcast reference signals. Based
on the strength of the reference signal received power (RSRP)
as well as the minimum elevation angle from sensors to the
UAV hovering point, UAV can fly to one spot and serve for a
specific sensor in the system. When one sensor has completed
the data transmission to the UAV, it will stop broadcasting the
reference signal. It is noticeable that the UAV may serve for
a sensor not located at the grid where the UAV is flying over.
As shown in Fig. 1, the UAV serves for the sensor at the grid
neighboring to the grid of the UAV stays.

Suppose that the UAV stays at the height of Fx̃ above the
center of the grid k and serves for the sensor j at the grid i.
The transmitting power is assumed as a constant P0, and the
wireless channel gain is denoted by |hijkx̃

|2. Then, the uplink
throughput, Tijkx̃

, is

Tijkx̃
=

B log2(1 +
P0|hijkx̃

|2

σ2
), α ≥ αmin,

P0|hijkx̃
|2

σ2
≥ γ0;

0, α < αmin,
(1)

where B is the channel bandwidth, and σ2 denotes the Gaus-
sian white noise power perceived at the UAV. We assume that
the wireless bandwidth of sensors is orthogonal with each
other. In Eq. (1), γ0 denotes the threshold of signal to noise
ratio (SNR). If either α < αmin or

P0|hijkx̃
|2

σ2 < γ0, UAV
cannot serve the sensor when it stays at the grid k from the
height of Fx̃. In other words, Tijkx̃

= 0 in the two cases.
Although a higher UAV can have a wider range with more
sensors to select by the UAV, the distance between UAV and
sensors increases. Eq. (1) indicates that there might be some
sensors which cannot be served with a specific hovering height

of UAV in the system. In this case, the sensor will not be
recorded by the UAV. This process of UAV detection is defined
as UAV cruise in Definition 1.

Definition 1 (UAV cruise) at the beginning of data collec-
tion, the UAV should first cruise over the N spots from the
nH configurations of UAV height in turn. Sensors broadcast
reference signals, based on which the UAV can detect the
sensors. The UAV records the sensors transmitting reference
signals to it with the received SNR above γ0 and the elevation
angle larger than αmin. The set of sensors recorded in the UAV
is denoted by Umx for an arbitrary grid m from the height of
Fx.

When the UAV flies from the height of Fx at the grid m
to the height of Fx̃ at the grid k, we denote the distance by
Lmx,kx̃

meter (m), and the flight speed of the UAV by V m/s.
Then, the corresponding delay of flying can be represented by

τfmx,kx̃
=
Lmx,kx̃

V
. (2)

We assume that the time-slot of the UAV serving for a specific
user is τ0 second. After the time-slot, the UAV will re-select
a spot and hovering height to hover over and serve for a
sensor in the system. Additionally, the UAV may be charged
for multiple times to receive sensor data. We assume that the
wireless charging of the UAV takes τw seconds in one time.

In terms of energy consumption, the power consumption
of UAV flying is denoted by Pv W/(meter/s), and the power
consumption of UAV hovering is denoted by Ps W. Then, the
overall energy consumption of the UAV flying at the height of
Fx from spot m to the height of Fx̃ of the spot k and serving
for a specific sensor with one time-slot is

Ef
mx,kx̃

= PvLmx,kx̃
+ Psτ0. (3)

Based on Eqs. (1) and (3), the corresponding energy-efficiency
of the UAV flying from the height of Fx of spot m to the height
of Fx̃ at the spot k, and serving for the sensor j in at the grid
i (j ∈ Ukx̃

) with one time-slot can be given by

Gmx,kx̃

i,j =
Tijkx̃

PvLmx,kx̃
+ Psτ0

, j ∈ Ukx̃
. (4)

When the objective is to maximize the energy-efficiency
while the UAV is collecting data, Gmx,kx̃

i,j should be maxi-
mized, where kx̃ is the variable. Similarly, when the objective
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is to maximize the throughput while the UAV is collecting
data, Tijkx̃

should be maximized, where kx̃ is the variable.
Since the the global wireless channel gain and the distance
between the spots are unavailable in the UAV, both the two
system optimization models cannot be directly solved.

Q-learning provides an effective approach for the UAV
to learn the wireless channel gains, as well as the obtained
throughput and energy consumption under different UAV
actions, and generate the optimal UAV route to maximize the
energy-efficiency of throughput.

B. Reinforcement Learning Based UAV Route

Q-Learning is a branch of reinforcement learning to deal
with the decision of multi-states [41], which is the generaliza-
tion of MDP. We define the state space of UAV by S, action
space of UAV by A, the reward by G, and the probability
of the state transforming by P. The process of MDP can be
denoted by MDP< S,A,G,P > as follows.

• S: the state space denotes a specific height Fx above
a spot m where the UAV is hovering over. After the
implementation of UAV cruise by Definition 1, the system
has N × nH states in S denoting the hovering locations
of the UAV.

• A: the action space denotes that the UAV flies from the
height of Fx of a specific spot m to another specific height
of Fx̃ of spot k and serves for a specific sensor j in Ukx̃

in grid i, which is denoted by amx→kx̃
ij . For an arbitrary

state, there are N × nH ×N × J available actions in A
for the UAV.

• G: for an arbitrary action, the UAV can obtain a reward
to measure the value of the action. We denote the state
of the t-th (t ≥ 1) time of UAV movement by St, and
the corresponding action by At. After the UAV takes
the action At for the state St, it can obtain a reward
Gt(St, At) belonging to the reward space G.

• P: define P[St+1|St] in P as the probability of the state St

transforming to St+1. SinceP[St+1|St] is independent of
all previous states and actions, P[St+1|S1, S2, . . . , St] =
P[St+1|St]. Then, a transition matrix can be obtained to
demonstrates the probabilities of transitioning from one
state to another.

The objective of Q-learning is to learn from the P in the
MDP to find an optimal strategy π∗ [41] for maximizing the
cumulative sum of all future rewards. Choosing a strategy π,
the action at can be denoted by π(at), and the cumulative
discount sum of all the future rewards using strategy π is

Gπ =

T∑
t=1

δt−1Gt(St, π(at)), (5)

where 0 ≤ δ < 1 is a discount factor, and T is the number
of rewards for accumulation. δ determines the weight of the
future reward. Denote the space of all the enabled strategies
by Λ. The optimal strategy is

π∗ = argπ∈Λ max rπ. (6)

We can obtain a value measuring the total reward from this
state over time as follows:

Qt(St, At) =
∞∑
k=0

δkGt+k+1(St+k+1, At+k+1). (7)

By Bellman equation, for a state St, the average value over
time is calculated by Q̃(St) as:

Q̃(St) = E[Gt|St]

= E[Gt+1 + δGt+2 + δ2Gt+2 + . . .)|St]

= E[Gt+1 + δQ̃(St+1)|St].
(8)

Based on {Q̃(St)}, we can obtain a convergence of Q value
to guide the action for each state. The {Q̃(St)} can be dealt
as a Q-table, and the process above is called Q-learning.

By Q-learning, a reward function is employed to optimize
the action of UAV. In this paper, we use Eq. (4) as our
reward function to command UAV taking actions with energy-
efficiency awareness. Q-learning iteratively improves the state-
action value function by updating Q-table based on the Q
function, which is represented by its received reward plus an
expectation of total future rewards in its next state. The optimal
Q-value function is

Q∗(St, At) = E[Gt(St, At) + δmax
At+1

Q∗(St+1, At+1)]. (9)

In particular, the optimal strategy π∗ can be obtained by the
optimal Q-value function in Eq. (9) as folows.

π∗(St) = argAt
maxQ∗(St, At). (10)

The Q values are stored in Q-table and updated iteratively. In
practice, UAV approximates the optimal Q-function based on
the observations of the environment, and updates the Q value
in Q-table by Eq. (11) [41].

Q(St, At)← (1− ψ)Q(St, At)

+ ψ[Gt(St, At) + δmax
At+1

Q∗(St+1, At+1)].
(11)

The parameter ψ (0 ≤ ψ ≤ 1) denotes the learning rate. Since
Q-learning is an iterative algorithm, the Q value function will
converge to optimal strategy π∗ under a certain condition [42,
43] as follows. In this paper, we set ψ = 1, which means that
the UAV learns very quickly. The Q function is designed and
updated iteratively by Eq. (12) below:

Q(St, At)← Gmx→kx̃
ij + δ × max

i′,j′,k′,x′
Q(k, a

kx̃→k′
x′

i′j′ ), (12)

where At = amx→kx̃
ij , St = mx, and St+1 = kx̃. Parameter

δ in [0, 1) is a discount factor. δ → 1 makes Q function
focusing on the long-term reward, and δ → 0 makes Q
function focusing on the immediate reward of a pair of state
and action [43].

When the length of the file Z at each sensor is large enough,
the reward of each action can be kept for a relatively long
time, where a stable Q-table can be obtained. However, if
Z is relatively small, the reward for each action will vary
frequently, resulting in a unstable Q-table.. Hence the Q-table
works when Z is relatively large [43].
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Fig. 2. UAV states and actions.

In practice, from a specific state St = mx at the t-th
movement, UAV has a probability of Pa = ξ for taking action
by

At = arg
Ãt

maxQ
(
mx, Ãt

)
. (13)

By Eq. (13), UAV will serve for the sensor j (j ∈ Ukx̃
) in the

grid i from the height of Fx̃ above the spot k, corresponding
to At = amx→kx̃

ij . On the other hand, UAV has a probability
of Pa = 1 − ξ for taking a random or pre-determined action
At, where UAV flies to a random or pre-determined spot and
serves for a random or pre-determined sensor j of a grid i.
This indicates that the UAV has a probability of Pa = ξ to
maximize its received reward, yet it also has a probability of
Pa = 1 − ξ to explore the received reward of more pairs of
actions and states.

IV. Q-LEARNING THEORETICAL DATA COLLECTION
ALGORITHM BY UAV

A. Q-learning based energy-efficient data collection

The N spots constitute of the state space for the UAV’s
hovering and wireless charging. When the system objective
is to maximize the energy-efficiency of the UAV while it is
collecting the data, {Gmx,kx̃

i,j } in Eq. (4) is the reward.
The actions involved in UAV flight can be illustrated by Fig.

2. Regarding each state in the UAV movement, UAV takes
a probability of Pa = ξ to decide its movement based on
Q-function and a probability of Pa = 1 − ξ to decide its
movement based on a random or pre-determined manner. In
State 1, UAV hovers over the spot a with a specific hovering
height and serves for a sensor in grid a. In State 2, UAV moves
to the spot b with a specific hovering height and serves for a
specific sensor in grid b. In State 3, UAV flies to the spot c
with a specific hovering height and serves for a specific sensor
in the grid b. This indicates that UAV can select all sensors
in system which meets the minimal elevation αmin and the
threshold of SNR γ0 from an arbitrary spot. When a specific
sensor has transmitted all the data in its cache with Z bits, the
sensor stops transmitting reference signal and is deleted from
the set of sensors in the UAV, e.g., the user u in the grid c.

We denote a random value φ according to a uniform
distribution within [0,1]. If φ < ξ, then the UAV decides its
movement At based on Q-function in Eq. (13). If φ ≥ ξ,

we assume that the UAV decides its movement At by a pre-
determined manner, where the UAV serves for the sensor with
the least amount of data collected in the UAV. In this case, if
the amount of data for sensor j in grid i collected in the UAV
is the least, the sensor will be scheduled. Define the amount
of collected data in the UAV for an arbitrary sensor j̃ in grid ĩ
by βĩj̃ . Then, the index < i, j > of the selected sensor meets

< i, j >= arg
ĩ,j̃

min
(
βĩj̃

)
. (14)

After the pair < i, j > has been determined by Eq. (14), the
spot k and hovering height Fx̃ of the UAV meet

kx̃ = arg
Ãt

maxQ
(
St, Ãt

)
= arg

k,x̃
max

(
Q
(
mx, a

mx→kx̃
ij

))
,

(15)
where mx is the state of St, and At = amx→kx̃

ij in the case of
φ ≥ ξ. Considering Eqs. (13), (14), and (15), we can determine
the UAV action by Eq. (16):

At =


arg
Ãt

maxQ
(
mk, Ãt

)
, φ < ξ,

amx→kx̃
ij based on Eqs. (14), and (15), φ ≥ ξ,

(16)

where in the case of φ ≥ ξ, the index pair of the served sensor
< i, j > is determined by Eq. (14), and the next spot k and
hovering height Fx̃ of UAV is determined by Eq. (15) in the
case of φ ≥ ξ.

We assume that the energy consumption for the t-th move-
ment of the UAV is denoted by Et, the corresponding starting
spot and hovering height of the UAV by mt

x, and the next spot
as well as the hovering height of the UAV by ktx̃. Then, Et

can be expressed by

Et = Ef
mt

xk
t
x̃
= PvLmt

x,k
t
x̃
+ Psτ0. (17)

The overall energy-efficiency W of UAV can be calculated at
the UAV as:

W =

∑
1≤i≤N

∑
1≤j≤J βij∑T̃

t=0Et

, (18)

where T̃ is the overall number of movement that the UAV
takes to collect sensor data in the system. In Eq. (18),
only sensor data collected by the UAV is considered, i.e.,
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Algorithm 1 Implementation of QEDU algorithm.
Input:

Initialize the number of UAV movement t = 0; Initialize Q-table by an
empty table; Initialize reward space G by an empty set, G = ∅; State
space S = {1, 2, . . . , N}; Action space A = {amx→kx̃

ij }; Initialize
βij = 0, ∀i, and ∀j; The length of data for transmission per sensor Z;
a small positive value δ; ξ (0 ≤ ξ ≤ 1); γ0; Initial the spot of UAV by
S0 = mx.

Output:
Energy-efficiency W and overall delay D.

1: Step 1) detecting sensors in system:
2: Implement the UAV cruise in Definition 1, and obtain {Ukx̃

}, ∀i.
3: UAV flies back to the spot mx.
4: Step 2) Q-learning based data collection for QEDU:
5: while |βij − Z| > δ (i ∈ S and j ∈ Ui) do
6: Generate a random value φ (0 ≤ φ ≤ 1);
7: Determine the t-th action At by Eq. (16);
8: Update reward function G by G

mx→kx̃
ij in Eq. (4);

9: Update Q(St, At) by Eq. (12);
10: t+ 1 → t;
11: St = kx̃.
12: end while
13: Calculate energy-efficiency W and overall delay D of UAV.

∑
1≤i≤N

∑
1≤j≤J βij ≤ NJZ. Hence, a smaller γ0 can im-

prove the amount of data collected in the UAV, corresponding
to a stronger capacity of data receiving for the UAV.

We denote the delay of flying in Eq. (2) for the t-th
movement by τfmtkt

. The overall delay D of UAV can be
denoted as:

D =
T̃∑

t=0

τfmtkt
+ τw ×

⌈∑T̃
t=0Et

Ew

⌉
, (19)

where Ew is the supplement of energy by wireless charging
in one time. The delay of wireless charging is denoted by τw
for one time. In Eq. (19), the number of wireless charging

is denoted by
⌈∑T̃

t=0 Et

Ew

⌉
. In practice, the rate of wireless

charging Ew

τw
denotes the capacity of wireless charging at the

spots.
The overall data amount collected by UAV is

Y =
∑

1≤i≤N

∑
1≤j≤J

βij . (20)

Then, the Q-learning based energy-efficient data collection
by UAV (i.e., QEDU) algorithm can be illustrated in Algorithm
1. By QEDU, UAV can learn an energy-efficient route to
collect sensor data. In Line 1, the UAV detects sensors by
the UAV cruise in Definition 1. Afterwards, the UAV flies
back to the initial spot mx. In Line 4, Q-learning based data
collection by the UAV is implemented in an iterative manner.
In Line 6, a random variable φ is used to decide the method
generating an action from the current state m. In Line 7,
the action is generated by Eq. (16). In Line 8, the reward
function is updated by the energy-efficiency involved in the
action in Line 7. In Line 9, Q-function can be updated based
on the reward function. From Line 10 to Line 11, variables are
updated for the next iteration. The iteration will be continued
until all the data has been collected from sensors in {Umx}
by the UAV as in Line 5.

Algorithm 2 Implementation of QTDU algorithm.
Input:

Initialize the number of UAV movement t = 0; Initialize Q-table by an
empty table; Initialize reward space G by an empty set, G = ∅; State
space S = {1, 2, . . . , N}; Action space A = {amx→kx̃

ij }; Initialize
βij = 0, ∀i, and ∀j; The length of data for transmission per sensor Z;
a small positive value δ; ξ (0 ≤ ξ ≤ 1); γ0; Initial the spot of UAV by
S0 = mx.

Output:
Energy-efficiency W and overall delay D.

1: Step 1) detecting sensors in system:
2: Implement UAV cruise in Definition 1, and obtain {Ukx̃

}.
3: UAV flies back to the spot mx.
4: Step 2) Q-learning based data collection for QTDU:
5: while |βij − Z| > δ (i ∈ S and j ∈ Ui) do
6: Generate a random value φ (0 ≤ φ ≤ 1);
7: Determine the t-th action At by Eq. (24);
8: Update reward function G by G̃

mx→kx̃
ij in Eq. (21);

9: Update Q(St, At) by Eq. (22);
10: t+ 1 → t;
11: St = kx̃.
12: end while
13: Calculate energy-efficiency W and overall delay D of UAV.

B. Q-learning based throughput-maximizing data collection

When the system objective is to maximize the throughput
of the UAV while it is collecting the data, {Tijkx̃

} in Eq. (1)
is the reward. This constructs a Q-learning based throughput-
maximizing data collection by UAV (i.e., QTDU) algorithm
proposed by Algorithm 2.

In QTDU, the reward function G̃mx→kx̃
ij is based on the

amount of sensor data collected by UAV flying from spot m
with the height of Fx to k with the height of Fx̃, and serving
for the sensor j of Ukx̃

in the grid i with one time-slot as

G̃mx→kx̃
ij = Tijkx̃

. (21)

Like Eq. (12), we can obtain the Q function of QTDU, denoted
by Q̃(St, At), in Eq. (22).

Q̃(St, At)← G̃mx→kx̃
ij + γ × max

i′,j′,k′,x′
Q̃(k, a

kx̃→k′
x′

i′j′ ). (22)

In the case that the generated random value φ meeting φ ≥ ξ
in Line 6 of QTDU algorithm, the spot and the height of the
UAV in Eq. (15) can be re-written as kx̃ in Eq. (23).

kx̃ = arg
Ãt

max Q̃
(
St, Ãt

)
= arg

k,x̃
max

(
Q̃
(
mx, a

mx→kx̃
ij

))
,

(23)
where mx is the state of St, < i, j > is determined by Eq.
(14). and At = amx→kx̃

ij .
Considering Eqs. (13), (14), and (23), we can determine the

UAV action At of QTDU as:

At =


arg
Ãt

max Q̃
(
mx, Ãt

)
, φ < ξ,

amx→kx̃
ij based on Eqs. (14), and (15), φ ≥ ξ.

(24)

The outputs of QTDU are energy-efficiency W and overall
delay D of UAV as in Line 13 of QTDU algorithm, which
will be compared with the performance of QEDU.

As discussed above, QEDU and QTDU can generate the
route of the UAV with different objective functions. QEDU
can generate the route with energy-efficiency awareness, and
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QTDU aims to maximize UAV’s receiving sensor data at each
spot. In the future work, we will further formulate the system
by deep learning to adapt to a more complex environment [44].

Calculate the UAV benefit after 

UAV action and obtain the reward. 

Update the Q table by the UAV reward. 

Environment 

 

Take the action 

by Q table. 

Take the action 

by Eqs (12)-(13). 

  

Fig. 3. The implementation of the Q-learning based data collection by UAV.

By exploiting the two algorithms, we summarize the process
of Q-learning based data collection by UAV as in Fig. 3,
where the UAV first exchanges information with the wireless
environment to obtain the set of {Umx}. Then, the Q-table is
initialized as an empty table and stored in the UAV. Starting
from an arbitrary location with a random action, the UAV
can obtain a reward based on either the energy-efficiency or
the amount of the collected data, based on which the Q-table
can be updated. To determine the next action of the UAV, two
methods are used. The first one is based on the Q-table with the
probability of ξ to maximize the reward. The shortcoming of
this method is that the potential rewards brought by the other
actions may not be explored, and the current optimal reward
based on the Q-table may be not the optimal. The second one
is that the UAV serves the sensor with the least amount of data
collected in the UAV cache with the probability of 1−ξ . Since
all the data in {Umx} need to be collected, such a method
can extend the Q-table and provide more actions for the UAV
to obtain the potential larger rewards. This can also speed
up the Q-table updating in practice. The disadvantage behind
the second method is that the frequent implementation of this
method, poor rewards may be obtained due to the long distance
of the UAV flying. Hence, an appropriate tradeoff between the
two methods should be determined with the parameter ξ. After
the action, the state of the UAV will be updated, and the above
process is implemented in an iterative manner.

In Fig. 4, we show the UAV trajectory when Z = 5× 103.
The UAV trajectory for QEDU and QTDU are given in Fig.
4 (a) and (b), respectively. By the exploring when φ ≥ ξ,
the UAV trajectory will be gradually extended. However, the
different rewards lead to different UAV actions. We give the
specific performance parameters involved in the Q-learning
algorithms in Fig. 4 (c). The action of QEDU is determined
by maximizing the energy efficiency, which can also decrease
the total system delay. The action of QTDU is determined
by maximizing the amount of the data collection, where the
energy consumption and delay are not considered. We can find
that the overall flying distance of UAV with QEDU is less
than that with QTDU. This is because that QEDU considers
the energy consumption in its action decision. Thanks to the
time saving of QEDU to improve the system energy-efficiency,
QEDU outperforms QTDU in terms of both the system delay

4 

1 

3 

6 

7 

5 

2 

(a) The UAV flight by QEDU. 

4 

1 

3 

6 

7 

5 

2 

(b) The UAV flight by QTDU. 

Parameter QEDU QTDU 

The overall distance of 

UAV flying (km) 
233.2 344.55 

The time for data 

collection (hour) 
0.09 0.15 

The energy efficiency 

(bps/J) 
  

 
(c) The performance of the Q-learning based algorithms. 

Fig. 4. The performance of algorithms by Q-learning.

and energy-efficiency.

V. NUMERICAL RESULTS

TABLE I
SIMULATION PARAMETERS

Parameter Value
δ 0.5
N 7
J 4
B 50 MHz

The cell radius of grid L0 500 meter
The minimal height of UAV ζ 10 meter

Z 2× 106 bits
τw 10 s
τ0 10−3 s
γ0 100
Ew 10−6 J
B 50 MHz
V 20 m/s

αmin arctan(β/L0)
P0 2× 10−3 W
Pv 2× 10−8 W/(m/s)
Ps 2× 10−10 W
ξ 0.5

nH 2
Gaussian White noise power spectral density -174 dBm/Hz
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(c) The average energy efficiency v.s. J.

Fig. 5. The performance of algorithms with J.

In the simulation section, we employ the path loss model
as

L = 92.44 + 20× log10(L) + 20× log10(f) dB,

where f is the system operating frequency and f = 2 GHz.
The unit of the distance between UAV and sensors, L, is
kilometer (km), and the unit of the frequency is GHz in
the path loss model. We consider the fast fading as complex
Gaussian distribution CN (0, 1 dB), and the shadow model as
log-normal distribution C(0, 5 dB). Unless otherwise specified,
the simulation parameters are given in Table I. The minimal
height of UAV is denoted by β, and the available height of
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 (c) The average energy efficiency v.s. . 

Fig. 6. The performance of algorithms with nH .

UAV is determined by F = [1, 2, . . . , nH]× ζ.
For comparison, we take the traditional QTDU algorithm as

the compared algorithm to QEDU algorithm.
In Fig. 5, the performance of algorithms with J is illustrated.

In Fig. 5 (a), we compare the performance of QEDU and
QTDU in terms of data amount collected by UAV as in Eq.
(20). We can find the data amount collected by UAV is the
same under the two algorithms because the UAV will continue
to work until all the available data under the constraints of αmin
and γ0 has been collected. The same performance can also be
found in Fig. 6 (a), Fig. 7 (a), and Fig. 8 (a). As J increases,
the performance increases due to the larger number of sensors
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Fig. 7. The performance of algorithms with γ0.

providing the larger amount of user data. In Fig. 5 (b), we can
find that QEDU outperforms QTDU because on one hand, the
energy-efficiency aware UAV movement can largely decrease
the system delay. On the other hand, since the received amount
of sensor data is invariant under the two algorithms, QEDU
can always outperforms QTDU. By Fig. 5 (b), we find that
the larger number of sensors leads to the higher data collection
delay due to the larger flying distance of UAV. In Fig. 5 (c), we
can confirm that QEDU can save more energy than QTDU.
As J increases, the average energy-efficiency monotonously
decreases due to the increased collected data amount is less
than the increased energy consumption.
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Fig. 8. The performance of algorithms with ξ.

In Fig. 6, we study the algorithms performance with the
different configurations of nH. As nH increases, the available
number of the UAV hovering height increases. When nH
increases, the number of sensors covered by it increases. On
the other hand, as UAV height increases, the number of sensors
meeting the constraint of γ0 decreases. This indicates that, the
performance gain brought by increasing nH is decreased when
nH is sufficiently large as shown in Fig. 4. Similar to the cases
in Fig. 3, In Fig.4 (a), the collected data amount increases due
to the increased number of sensors covered by the UAV. In
Fig. 6 (b), as nH increases, the data collection delay increases
because the UAV should spend more time for learning the UAV
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flight to collect the data. In Fig. 6 (c), as nH increases, the
energy-efficiency decreases under the configuration in Table I.
It is notably that if Pv and Ps is decreased by the improved
UAV technologies, the energy-efficiency can also increase as
nH increases. We do not provide these simulation results under
the small Pv and Ps due to the page save.

In Fig. 7, we show the algorithms performance under differ-
ent configurations of γ0. It is obviously that when γ0 increases,
the number of sensors with SNR satisfying γ0 decreases. This
leads to the decrease of the collected data by the UAV as in
Fig. 7 (a). By the observation in Fig. 7 (b), as γ0 increases the
gap between the performance of QEDU and QTDU narrows
because that the number of sensors with SNR meeting γ0
decreases, providing the less flexibility for QEDU to cut down
the delay by the energy-efficient movement of UAV. In Fig.
7 (c), we find that the average energy-efficiency of QEDU
outperforms QTDU. This is because the UAV movement of
QEDU employs the energy-efficient reward function in Eq.
(4). The energy-efficiency increases as γ0 increases due to the
decreased UAV working time for the data collection.

In Fig. 8, the impact of ξ on the Q-learning performance
is illustrated. As in Fig. 8 (a), the amount of data collection
remains as ξ changes, because the amount of data collection
only depends on the values of αmin and γ0. As in Fig. 8 (b),
as ξ increases, the data collection delay first falls and then
achieves the minimal value. As ξ further increases, the data
collection delay increases. By Fig. 8 (b), we can find the
optimal ξ to minimize the system delay. The reason behind
the above changes of the algorithms performance is that a
more frequent UAV movement based on the Q-function can
collect data with either energy-efficient awareness by QEDU
or throughput awareness by QTDU. However, the effective
guideline via the Q-table is limited due to that the Q-table
is updated and extended slowly. On the other hand, a more
frequent UAV movement based on the data amount collected
in UAV cache can effectively updated the Q-table more faster.
However, the UAC flying actions are more frequently mo-
tivated without the energy-efficient awareness and throughput
awareness, which may increase the flying time of UAV. In Fig.
8 (c), as ξ increases, the energy-efficiency first increases and
then achieves the maximal value. As ξ further increases, the
energy-efficiency decreases. This is because that the energy
consumption and delay are first decreased due to the Q-table
guideline and then increased by the more slowly updated Q-
table.

VI. CONCLUSION

In this paper, we have studied Q-Learning based energy-
efficient data collection by UAV. We have proposed a frame-
work of a UAV assisted wireless sensor network to collect
sensor data. By analyzing the states and actions of the UAV, we
formulated the Q-learning based mechanism to collect sensor
data while improving the energy-efficiency. Under different
scenarios, we have evaluated the performance of the proposed
learning mechanism and verified its effectiveness by extensive
simulations. In our future work, we will further consider the
scenario of multiple UAVs and investigate the cooperation of
multi-UAV for efficient data collection.
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