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Abstract—In this article, we study the application of unmanned
aerial vehicle (UAV) for data collection with wireless charging,
which is crucial for providing seamless coverage and improving
system performance in the next-generation wireless networks. To
this end, we propose a reinforcement learning-based approach
to plan the route of UAV to collect sensor data from sensor
devices scattered in the physical environment. Specifically, the
physical environment is divided into multiple grids, where one
spot for UAV hovering as well as the wireless charging of UAV
is located at the center of each grid. Each grid has a spot for
the UAV to hover, and moreover, there is a wireless charger at
the center of each grid, which can provide wireless charging
to UAV when it is hovering in the grid. When the UAV lacks
energy, it can be charged by the wireless charger at the spot.
By taking into account the collected data amount as well as the
energy consumption, we formulate the problem of data collection
with UAV as a Markov decision problem, and exploit Q-learning
to find the optimal policy. In particular, we design the reward
function considering the energy efficiency of UAV flight and data
collection, based on which Q-table is updated for guiding the
route of UAV. Through extensive simulation results, we verify that
our proposed reward function can achieve a better performance
in terms of the average throughput, delay of data collection, as
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well as the energy efficiency of UAV, in comparison with the
conventional capacity-based reward function.

Index Terms—Data collection, design of reward function,
energy efficiency, Q-learning, reinforcement learning, unmanned
aerial vehicle (UAV).

I. INTRODUCTION

AS THERE is an explosive increase in the number of sen-
sors in physical environments, collecting data from the

widely deployed sensors has become a critical issue to Internet
of Things (IoT) [1]–[3], terrestrial-satellite networks [4], etc.
In order to collect the data in the physical environment, sensor
devices are distributed to collect the traffic demand, environ-
ment information, etc., and put these information into data
blocks for further processing. However, considering the prac-
tical environment constraints, it is infeasible for sensors to
directly communicate with base stations (BSs), e.g., in rural
or mountain areas. Fortunately, the unmanned aerial vehicle
(UAV) [1], [5]–[11] provides an effective approach to collect
sensor data, where UAV can act as a mobile BS in the air.

Several existing works [12]–[14] have discussed the typi-
cal application scenarios of UAV-assisted wireless networks.
In general, the applications of UAV in data collection can be
categorized into online UAV relay between BS and sensors
and the offline UAV collection of sensor data. For the for-
mer type of applications, UAV will be the mobile relay to
enhance the received signal strength from sensors to BS in
real time [6], [15], [16]. For the latter type, the delay should
be insensitive for sensor data, and sensors can temporarily
cache the detected data as files for transmitting to UAV. In
particular, the latter type of applications can be leveraged in
many scenarios, such as geoenvironmental detection, record
transaction in IoT, etc.

In this work, we focus on the latter one, i.e., UAV-based
offline data collection. This scenario has been studied from
different aspects to improve the performance of data collec-
tion. Zhan et al. [17] jointly optimized the wakeup schedule
of sensors and UAV trajectory to minimize the energy con-
sumption of sensors. Gong et al. [18] studied the flight time
minimization problem for completing the UAV-based data col-
lection mission in a 1-D sensor network. In practice, UAV
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does not have the global channel state information between
sensors and UAV. In addition, the computation as well as
the battery capacity of UAV require low-complexity solutions
without consuming a heavy computational burden. Machine
learning has been recognized as an effective method to plan
the route of UAV. Some works have explored the performance
gain brought by machine learning in UAV-assisted wire-
less networks. Yijing et al. [19] proposed an improved
Q-learning method [20]–[22] to achieve UAV navigation
and obstacle avoidance. Wu [23] proposed a direction-aware
Q-learning algorithm to locate the illegal radio station by UAV.
Bayerlein et al. [24] studied the throughput maximization
problem in UAV-based data collection. However, the afore-
mentioned works do not consider the energy efficiency of
UAV, which may lead to a significant power consumption, and
therefore, affect the flight time for data collection.

Motivated by the above observations, in this article, we
propose an energy-efficient Q-learning approach to plan the
route of UAV for data collection. Q-learning can be modeled
as a Markov decision process (MDP), which can derive the
optimal solution under the probabilistic behavior of a system.
Specifically, we consider a geographical area where a wireless
sensor network is deployed and sensors continuously broad-
cast reference signal. Based on the reference signal received
power (RSRP), UAV selects one sensor and receives its data
in one time slot. The spots in the system have multiple hov-
ering height [25]. UAV can hover over at a specific height of
a spot to collect sensor data. Moreover, to prolong the flight
time of the UAV, we deploy a wireless charger at the center
of each grid, which provides wireless charging to the UAV
when it is in short of energy. Different from the traditional
Q-learning approach focusing on only the system throughput
gain, we consider the energy consumption of UAV flight and
propose an energy efficiency-oriented reward function in this
article. Based on the reward function, a Q-table will be itera-
tively updated to guide the trajectory of UAV while improving
its energy efficiency.

Starting from a specific spot, UAV will continue moving and
hovering over the spots for data collection based on RSRP of
sensors. In each time slot, the UAV flies to a spot to collect
data from the sensor in the grid with a certain probability
such that a large Q value can be obtained. In our design of
Q function, we consider both the UAV’s energy consumption
for hovering and flying, and the delay of flying and wireless
charging for powering. As a result, our proposed Q-learning
framework is able to provide an energy-efficient solution for
the UAV’s trajectory optimization.

The remainder of this article is organized as follows. We
review the related studies in Section II. Section III presents the
system model and problem formulations. Section IV presents
the Q-learning framework based on the energy efficiency of
UAV for collecting sensor data. The simulation results are
demonstrated in Section V. We finally conclude the work and
discuss the future directions in Section VI.

II. RELATED WORKS

Reinforcement learning has been widely used in wireless
communications. Nie and Haykin [26] proposed an alternative

Q-learning theoretical approach to solve the dynamic chan-
nel assignment problem in wireless networks. The feature of
Q-learning that it does not require the explicit state transi-
tion model to solve the Markov decision problem quickly
attracts researchers’ attentions. This enables Q-learning to
adapt the large state space and action set. Yu et al. [27]
used Q-learning to guarantee the traffic QoS for wire-
less adaptive multimedia. In recent years, there have been
many studies exploiting the reinforcement learning in differ-
ent scenarios, e.g., device-to-device scenario [28], wireless
systems [29], etc.

As the wireless networks evolve, the parameters and sce-
narios become more and more complex, which can lead to the
difficulty of network planning by the traditional optimization
technologies, such as convex optimization [4], geometric pro-
gramming, etc. On the other hand, the global optimal solution
is not practical in engineering. Reinforcement learning pro-
vides an effective method to learn the network actions from
the environment. Such a scalability and flexibility of rein-
forcement learning cater for the complex network, such as 5G
and beyond 5G networks, especially as the terrestrial-satellite
system is employed and a more complex network leading to a
large amount of states and actions. Raza et al. [30] proposed
a slice admission strategy based on reinforcement learning in
5G network slicing. Zhang et al. [31] used the deep reinforce-
ment learning method to provide proactive caching for the
multiview 3-D videos in 5G.

In terms of the applications beyond 5G, UAV-BS is a typical
scenario. Yin et al. [32] used a deterministic policy gradient-
based reinforcement learning to generate the trajectory for
UAV. Challita et al. [33] used a dynamic game-based deep
reinforcement learning to manage the wireless interference in
the scenario of cellular-connected UAVs. Liu et al. [34] used
reinforcement learning to achieve the dynamic movement of
multiple UAVs in a wireless network. Dai et al. [35] studied
the deployment of multiple UAVs in a dynamic environ-
ment. Hu et al. [36] proposed an intelligent handover control
method in UAV cellular networks by a deep learning method.
Li et al. [37] surveyed the artificial intelligence-driven spec-
trum management in various wireless networks, such as UAV
networks, etc.

In terms of energy harvesting, wireless charging can be used
for a timely energy supplement in a UAV-based system [38].
Su et al. [39] employed UAV as a wireless charger to provide
the energy supplement of energy-constrained devices. Chai and
Lau in [40] proposed an online UAV-assisted wireless caching
with wireless charging.

In the existing works, several aspects of the applications
of reinforcement learning have been proposed in wireless
networks. However, the existing works mostly consider
a scenario with a relatively small number of states or
actions. Different from the existing works, in this article,
we consider a more practical scenario of the reinforcement
learning-based data collection via UAV by accounting
for the UAV trajectory, hovering height, wireless power
charging, etc. We also give an in-depth performance
evaluation of the proposed algorithm via extensive
simulations.
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Fig. 1. UAV-based data collection.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a system with N grids as shown in Fig. 1,
where J sensors are scatted in each grid. One spot is at the
center of each grid. One wireless charger is configured at each
spot. UAV should hover over the wireless charger at a specific
grid to replenish energy as well as collect sensor data from a
certain sensor device in the system. Although wireless power
charging can prolong the working period of UAV, the cost
of wireless chargers is an important part of the system cost.
This indicates that the number of wireless chargers should be
decreased. Hence, we assume that the wireless chargers are
configured at each spot to minimize the number of wireless
chargers per grid. At each charging point, UAV has nH pre-
determined UAV hovering heights, which are denoted by set
F = {F1,F2, . . . ,FnH}.

In the system, we assume that the data can only be collected
when the UAV is hovering over a wireless charging device. All
the sensors in the system possess a file with a length of Z bits
for uploading to the UAV. Considering the practical device
capability, we assume that the minimum elevation angle from
an arbitrary sensor to the UAV is αmin. If a sensor has the
elevation angle α < αmin, it cannot be served by UAV. This
indicates that a larger height of the UAV can have a wider
range with more sensors to select by the UAV. On the other
hand, sensors continuously broadcast reference signals. Based
on the strength of RSRP as well as the minimum elevation
angle from sensors to the UAV hovering point, UAV can fly
to one spot and serve for a specific sensor in the system. When
one sensor has completed the data transmission to the UAV,
it will stop broadcasting the reference signal. It is noticeable
that the UAV may serve for a sensor not located at the grid
where the UAV is flying over. As shown in Fig. 1, the UAV
serves for the sensor at the grid neighboring to the grid of the
UAV stays.

Suppose that the UAV stays at the height of F̃x above the
center of the grid k and serves for the sensor j at the grid i.
The transmitting power is assumed as a constant P0, and the
wireless channel gain is denoted by |hijk̃x |2. Then, the uplink
throughput, Tijk̃x , is

Tijk̃x =
⎧

⎨

⎩

B log2

(

1+ P0|hijk̃x |2
σ 2

)

, α ≥ αmin,
P0|hijk̃x |2
σ 2 ≥ γ0;

0, α < αmin

(1)

where B is the channel bandwidth, and σ 2 denotes the
Gaussian white noise power perceived at the UAV. We assume
that the wireless bandwidth of sensors is orthogonal with each
other. In (1), γ0 denotes the threshold of signal-to-noise ratio
(SNR). If either α < αmin or (P0|hijk̃x |2/σ 2) < γ0, UAV can-
not serve the sensor when it stays at the grid k from the height
of F̃x. In other words, Tijk̃x = 0 in the two cases. Although a
higher UAV can have a wider range with more sensors to select
by the UAV, the distance between UAV and sensors increases.
Equation (1) indicates that there might be some sensors that
cannot be served with a specific hovering height of UAV in
the system. In this case, the sensor will not be recorded by
the UAV. This process of UAV detection is defined as UAV
cruise in Definition 1.

Definition 1 (UAV Cruise): At the beginning of data collec-
tion, the UAV should first cruise over the N spots from the nH

configurations of UAV height in turn. Sensors broadcast refer-
ence signals, based on which the UAV can detect the sensors.
The UAV records the sensors transmitting reference signals
to it with the received SNR above γ0 and the elevation angle
larger than αmin. The set of sensors recorded in the UAV is
denoted by Umx for an arbitrary grid m from the height of Fx.

When the UAV flies from the height of Fx at the grid m to
the height of F̃x at the grid k, we denote the distance by Lmx,k̃x

meter (m), and the flight speed of the UAV by V m/s. Then,
the corresponding delay of flying can be represented by

τ
f
mx,k̃x
= Lmx,k̃x

V
. (2)

We assume that the time slot of the UAV serving for a spe-
cific user is τ0 second. After the time slot, UAV will reselect
a spot and hovering height to hover over and serve for a sen-
sor in the system. Additionally, the UAV may be charged for
multiple times to receive sensor data. We assume that the
wireless charging of the UAV takes τw seconds in one time.

In terms of energy consumption, the power consumption
of UAV flying is denoted by Pv W/(meter/s), and the power
consumption of UAV hovering is denoted by Ps W. Then, the
overall energy consumption of the UAV flying at the height of
Fx from spot m to the height of F̃x of the spot k and serving
for a specific sensor with one time slot is

Ef
mx,k̃x
= PvLmx,k̃x + Psτ0. (3)

Based on (1) and (3), the corresponding energy efficiency of
the UAV flying from the height of Fx of spot m to the height
of F̃x at the spot k, and serving for the sensor j in at the grid
i (j ∈ Uk̃x ) with one time-slot can be given by

Gmx,k̃x
i,j = Tijk̃x

PvLmx,k̃x + Psτ0
, j ∈ Uk̃x . (4)

When the objective is to maximize the energy efficiency
while the UAV is collecting data, Gmx,k̃x

i,j should be maximized,
where k̃x is the variable. Similarly, when the objective is to
maximize the throughput while the UAV is collecting data,
Tijk̃x should be maximized, where k̃x is the variable. Since
the global wireless channel gain and the distance between
the spots are unavailable in the UAV, both the two system
optimization models cannot be directly solved.
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Q-learning provides an effective approach for UAV to learn
the wireless channel gains, as well as the obtained throughput
and energy consumption under different UAV actions, and gen-
erate the optimal UAV route to maximize the energy efficiency
of throughput.

B. Reinforcement Learning-Based UAV Route

Q-learning is a branch of reinforcement learning to deal with
the decision of multistates [41], which is the generalization of
MDP. We define the state space of UAV by S, action space of
UAV by A, the reward by G, and the probability of the state
transforming by P. The process of MDP can be denoted by
MDP<S,A,G,P> as follows.

1) S: The state space denotes a specific height Fx above a
spot m where the UAV is hovering over. After the imple-
mentation of UAV cruise by Definition 1, the system has
N×nH states in S denoting the hovering locations of the
UAV.

2) A: The action space denotes that the UAV flies from
the height of Fx of a specific spot m to another specific
height of F̃x of spot k and serves for a specific sensor
j in Uk̃x in grid i, which is denoted by amx→k̃x

ij . For an
arbitrary state, there are N×nH×N×J available actions
in A for the UAV.

3) G: For an arbitrary action, the UAV can obtain a reward
to measure the value of the action. We denote the state
of the tth (t ≥ 1) time of UAV movement by St, and
the corresponding action by At. After the UAV takes the
action At for the state St, it can obtain a reward Gt(St,At)

belonging to the reward space G.
4) P: Define P[St+1|St] in P as the probability of

the state St transforming to St+1. Since P[St+1|St]
is independent of all previous states and actions,
P[St+1|S1, S2, . . . , St] = P[St+1|St]. Then, a transition
matrix can be obtained to demonstrate the probabilities
of transitioning from one state to another.

The objective of Q-learning is to learn from P in MDP to
find an optimal strategy π∗ [41] for maximizing the cumulative
sum of all future rewards. Choosing a strategy π , the action
at can be denoted by π(at), and the cumulative discount sum
of all the future rewards using strategy π is

Gπ =
T

∑

t=1

δt−1Gt(St, π(at)) (5)

where 0 ≤ δ < 1 is a discount factor, and T is the number
of rewards for accumulation. δ determines the weight of the
future reward. Denote the space of all the enabled strategies
by �. The optimal strategy is

π∗ = argπ∈� max rπ . (6)

We can obtain a value measuring the total reward from this
state over time as follows:

Qt(St,At) =
∞
∑

k=0

δkGt+k+1(St+k+1,At+k+1). (7)

By the Bellman equation, for a state St, the average value over
time is calculated by ˜Q(St) as

˜Q(St) = E[Gt|St]

= E
[

Gt+1 + δGt+2 + δ2Gt+2 + . . .)|St

]

= E
[

Gt+1 + δ˜Q(St+1)|St
]

. (8)

Based on {˜Q(St)}, we can obtain a convergence of Q value
to guide the action for each state. {˜Q(St)} can be dealt as a
Q-table, and the process above is called Q-learning.

By Q-learning, a reward function is employed to optimize
the action of UAV. In this article, we use (4) as our
reward function to command UAV taking actions with energy-
efficiency awareness. Q-learning iteratively improves the
state–action value function by updating Q-table based on the
Q function, which is represented by its received reward plus
an expectation of total future rewards in its next state. The
optimal Q-value function is

Q∗(St,At) = E

[

Gt(St,At)+ δmax
At+1

Q∗(St+1,At+1)

]

. (9)

In particular, the optimal strategy π∗ can be obtained by the
optimal Q-value function in (9) as follows:

π∗(St) = argAt
max Q∗(St,At). (10)

The Q values are stored in Q-table and updated iteratively. In
practice, UAV approximates the optimal Q-function based on
the observations of the environment, and updates the Q value
in Q-table by (11) [41]

Q(St,At)← (1− ψ)Q(St,At)

+ψ
[

Gt(St,At)+ δmax
At+1

Q∗(St+1,At+1)

]

.

(11)

The parameter ψ(0 ≤ ψ ≤ 1) denotes the learning rate. Since
Q-learning is an iterative algorithm, the Q value function will
converge to an optimal strategy π∗ under a certain condi-
tion [42], [43] as follows. In this article, we set ψ = 1, which
means that the UAV learns very quickly. The Q function is
designed and updated iteratively by (12) as follows:

Q(St,At)← Gmx→k̃x
ij + δ × max

i′,j′,k′,x′
Q

(

k, a
k̃x→k′

x′
i′j′

)

(12)

where At = amx→k̃x
ij , St = mx, and St+1 = k̃x. Parameter δ in

[0, 1) is a discount factor. δ→ 1 makes Q function focusing on
the long-term reward, and δ → 0 makes Q function focusing
on the immediate reward of a pair of state and action [43].

When the length of the file Z at each sensor is large enough,
the reward of each action can be kept for a relatively long
time, where a stable Q-table can be obtained. However, if Z
is relatively small, the reward for each action will vary fre-
quently, resulting in an unstable Q-table. Hence the Q-table
works when Z is relatively large [43].

In practice, from a specific state St = mx at the t-th
movement, UAV has a probability of Pa = ξ for taking
action by

At = arg
Ãt

max Q
(

mx, Ãt

)

. (13)
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Fig. 2. UAV states and actions.

By (13), UAV will serve for the sensor j (j ∈ Uk̃x ) in the
grid i from the height of F̃x above the spot k, corresponding
to At = amx→k̃x

ij . On the other hand, UAV has a probability
of Pa = 1 − ξ for taking a random or predetermined action
At, where UAV flies to a random or predetermined spot and
serves for a random or predetermined sensor j of a grid i.
This indicates that the UAV has a probability of Pa = ξ to
maximize its received reward, yet it also has a probability of
Pa = 1 − ξ to explore the received reward of more pairs of
actions and states.

IV. Q-LEARNING THEORETICAL DATA COLLECTION

ALGORITHM BY UAV

A. Q-Learning-Based Energy-Efficient Data Collection

The N spots constitute of the state space for the UAV’s
hovering and wireless charging. When the system objective is
to maximize the energy efficiency of UAV while it is collecting
the data, {Gmx,k̃x

i,j } in (4) is the reward.
The actions involved in UAV flight can be illustrated by

Fig. 2. Regarding each state in the UAV movement, UAV takes
a probability of Pa = ξ to decide its movement based on
Q-function and a probability of Pa = 1 − ξ to decide its
movement based on a random or predetermined manner. In
State 1, UAV hovers over the spot a with a specific hovering
height and serves for a sensor in grid a. In State 2, UAV moves
to the spot b with a specific hovering height and serves for a
specific sensor in grid b. In State 3, UAV flies to the spot c
with a specific hovering height and serves for a specific sensor
in the grid b. This indicates that UAV can select all sensors in
the system, which meets the minimal elevation αmin and the
threshold of SNR γ0 from an arbitrary spot. When a specific
sensor has transmitted all the data in its cache with Z bits, the
sensor stops transmitting reference signal and is deleted from
the set of sensors in the UAV, e.g., the user u in the grid c.

We denote a random value ϕ according to a uniform dis-
tribution within [0, 1]. If ϕ < ξ , then the UAV decides its
movement At based on Q-function in (13). If ϕ ≥ ξ , we
assume that the UAV decides its movement At by a prede-
termined manner, where the UAV serves for the sensor with
the least amount of data collected in the UAV. In this case, if
the amount of data for sensor j in grid i collected in the UAV
is the least, the sensor will be scheduled. Define the amount
of collected data in UAV for an arbitrary sensor j̃ in grid ĩ by

βĩj̃. Then, the index <i, j> of the selected sensor meets

< i, j >= arg
ĩ,j̃

min
(

βĩj̃

)

. (14)

After the pair < i, j > has been determined by (14), the spot
k and hovering height F̃x of the UAV meet

k̃x = arg
Ãt

max Q
(

St, Ãt

)

= arg
k,̃x

max
(

Q
(

mx, amx→k̃x
ij

))

(15)

where mx is the state of St, and At = amx→k̃x
ij in the case of

ϕ ≥ ξ . Considering (13)–(15), we can determine the UAV
action by

At =
{

argÃt
max Q

(

mk, Ãt

)

, ϕ < ξ,

amx→k̃x
ij based on (14), and (15), ϕ ≥ ξ (16)

where in the case of ϕ ≥ ξ , the index pair of the served
sensor < i, j > is determined by (14), and the next spot k and
hovering height F̃x of UAV is determined by (15) in the case
of ϕ ≥ ξ .

We assume that the energy consumption for the tth
movement of the UAV is denoted by Et, the corresponding
starting spot and hovering height of the UAV are denoted by
mt

x, and the next spot as well as the hovering height of the
UAV are denoted by kt

x̃. Then, Et can be expressed by

Et = Ef
mt

xkt
x̃
= PvLmt

x,k
t
x̃
+ Psτ0. (17)

The overall energy efficiency W of UAV can be calculated at
UAV as

W =
∑

1≤i≤N
∑

1≤j≤J βij
∑

˜T
t=0 Et

(18)

where ˜T is the overall number of movement that the
UAV takes to collect sensor data in the system. In (18),
only the sensor data collected by UAV is considered, i.e.,
∑

1≤i≤N
∑

1≤j≤J βij ≤ NJZ. Hence, a smaller γ0 can improve
the amount of data collected in the UAV, corresponding to a
stronger capacity of data receiving for UAV.

We denote the delay of flying in (2) for the tth movement
by τ f

mtkt
. The overall delay D of UAV can be denoted as

D =
˜T

∑

t=0

τ
f
mtkt
+ τw ×

⌈

∑
˜T
t=0 Et

Ew

⌉

(19)

where Ew is the supplement of energy by wireless charging in
one time. The delay of wireless charging is denoted by τw for
one time. In (19), the number of wireless charging is denoted
by �(∑˜T

t=0 Et/Ew)�. In practice, the rate of wireless charging
(Ew/τw) denotes the capacity of wireless charging at the spots.

The overall data amount collected by UAV is

Y =
∑

1≤i≤N

∑

1≤j≤J

βij. (20)

Then, the Q-learning-based energy efficient data collection
by the UAV (i.e., QEDU) algorithm can be illustrated in
Algorithm 1. By QEDU, UAV can learn an energy-efficient
route to collect sensor data. In line 1, the UAV detects sensors
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Algorithm 1 Implementation of QEDU Algorithm
Input:

Initialize the number of UAV movement t = 0; Initialize Q-table by an
empty table; Initialize reward space G by an empty set, G = ∅; State space
S = {1, 2, . . . ,N}; Action space A = {amx→k̃x

ij }; Initialize βij = 0 ∀i, and
∀j; The length of data for transmission per sensor Z; a small positive
value δ; ξ (0 ≤ ξ ≤ 1); γ0; Initial the spot of UAV by S0 = mx.

Output:
Energy-efficiency W and overall delay D.

1: Step 1) detecting sensors in system:
2: Implement the UAV cruise in Definition 1, and obtain {Uk̃x } ∀i.
3: UAV flies back to the spot mx.
4: Step 2) Q-learning-based data collection for QEDU:
5: while |βij − Z| > δ (i ∈ S and j ∈ Ui) do
6: Generate a random value ϕ (0 ≤ ϕ ≤ 1);
7: Determine the tth action At by (16);
8: Update reward function G by G

mx→k̃x
ij in (4);

9: Update Q(St,At) by (12);
10: t + 1→ t;
11: St = k̃x.
12: end while
13: Calculate energy-efficiency W and overall delay D of UAV.

Algorithm 2 Implementation of QTDU Algorithm
Input:

Initialize the number of UAV movement t = 0; Initialize Q-table by an
empty table; Initialize reward space G by an empty set, G = ∅; State space
S = {1, 2, . . . ,N}; Action space A = {amx→k̃x

ij }; Initialize βij = 0 ∀i, and
∀j; The length of data for transmission per sensor Z; a small positive
value δ; ξ (0 ≤ ξ ≤ 1); γ0; Initial the spot of UAV by S0 = mx.

Output:
Energy-efficiency W and overall delay D.

1: Step 1) detecting sensors in system:
2: Implement UAV cruise in Definition 1, and obtain {Uk̃x }.
3: UAV flies back to the spot mx.
4: Step 2) Q-learning-based data collection for QTDU:
5: while |βij − Z| > δ (i ∈ S and j ∈ Ui) do
6: Generate a random value ϕ (0 ≤ ϕ ≤ 1);
7: Determine the tth action At by (24);
8: Update reward function G by ˜G

mx→k̃x
ij in (21);

9: Update Q(St,At) by (22);
10: t + 1→ t;
11: St = k̃x.
12: end while
13: Calculate energy-efficiency W and overall delay D of UAV.

by the UAV cruise in Definition 1. Afterward, the UAV flies
back to the initial spot mx. In line 4, Q-learning-based data
collection by the UAV is implemented in an iterative manner.
In line 6, a random variable ϕ is used to decide the method
generating an action from the current state m. In line 7, the
action is generated by (16). In line 8, the reward function is
updated by the energy efficiency involved in the action in line
7. In line 9, Q-function can be updated based on the reward
function. From lines 10 to 11, variables are updated for the
next iteration. The iteration will be continued until all the data
have been collected from sensors in {Umx} by UAV as in line 5.

B. Q-Learning-Based Throughput-Maximizing Data
Collection

When the system objective is to maximize the throughput of
UAV while it is collecting the data, {Tijk̃x} in (1) is the reward.
This constructs a Q-learning-based throughput-maximizing
data collection by the UAV (i.e., QTDU) algorithm proposed
by Algorithm 2.

Fig. 3. Implementation of the Q-learning-based data collection by UAV.

In QTDU, the reward function ˜Gmx→k̃x
ij is based on the

amount of sensor data collected by UAV flying from spot m
with the height of Fx to k with the height of F̃x, and serving
for the sensor j of Uk̃x in the grid i with one time slot as

˜Gmx→k̃x
ij = Tijk̃x . (21)

Like (12), we can obtain the Q function of QTDU, denoted
by ˜Q(St,At), in

˜Q(St,At)← ˜Gmx→k̃x
ij + γ × max

i′,j′,k′,x′
˜Q

(

k, a
k̃x→k′x′
i′j′

)

. (22)

In the case of the generated random value ϕ meeting ϕ ≥ ξ in
line 6 of the QTDU algorithm, the spot and height of UAV in
(15) can be rewritten as k̃x in

k̃x = arg
Ãt

max ˜Q
(

St, Ãt

)

= arg
k,̃x

max
(

˜Q
(

mx, amx→k̃x
ij

))

(23)

where mx is the state of St, < i, j > is determined by (14),
and At = amx→k̃x

ij .
Considering (13), (14), and (23), we can determine the UAV

action At of QTDU as

At =
{

argÃt
max ˜Q

(

mx, Ãt

)

, ϕ < ξ

amx→k̃x
ij based on (14) and (15), ϕ ≥ ξ. (24)

The outputs of QTDU are energy efficiency W and overall
delay D of UAV as in line 13 of the QTDU algorithm, which
will be compared with the performance of QEDU.

As discussed above, QEDU and QTDU can generate the
route of the UAV with different objective functions. QEDU
can generate the route with energy-efficiency awareness, and
QTDU aims to maximize UAV’s receiving sensor data at each
spot. In the future work, we will further formulate the system
by deep learning to adapt to a more complex environment [44].

By exploiting the two algorithms, we summarize the pro-
cess of Q-learning-based data collection by UAV as in Fig. 3,
where the UAV first exchanges information with the wireless
environment to obtain the set of {Umx}. Then, the Q-table is
initialized as an empty table and stored in the UAV. Starting
from an arbitrary location with a random action, UAV can
obtain a reward based on either the energy efficiency or the
amount of the collected data, based on which the Q-table can
be updated. To determine the next action of UAV, two meth-
ods are used. The first one is based on the Q-table with the
probability of ξ to maximize the reward. The shortcoming of
this method is that the potential rewards brought by the other
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Fig. 4. Performance of algorithms by Q-learning. (a) UAV flight by QEDU.
(b) UAV flight by QTDU. (c) Performance of Q-learning-based algorithms.

actions may not be explored, and the current optimal reward
based on the Q-table may be not the optimal. The second
one is that the UAV serves the sensor with the least amount
of data collected in the UAV cache with the probability of
1−ξ . Since all the data in {Umx} need to be collected, such a
method can extend the Q-table and provide more actions for
the UAV to obtain the potential larger rewards. This can also
speed up the Q-table updating in practice. The disadvantage
behind the second method is that with the frequent implemen-
tation of this method, poor rewards may be obtained due to
the long distance of the UAV flying. Hence, an appropriate
tradeoff between the two methods should be determined with
the parameter ξ . After the action, the state of the UAV will be
updated, and the above process is implemented in an iterative
manner.

In Fig. 4, we show the UAV trajectory when Z = 5× 103.
The UAV trajectory for QEDU and QTDU is given in Fig. 4(a)
and (b), respectively. By exploring when ϕ ≥ ξ , the UAV
trajectory will be gradually extended. However, the different
rewards lead to different UAV actions. We give the specific
performance parameters involved in Q-learning algorithms in
Fig. 4(c). The action of QEDU is determined by maximizing
the energy efficiency, which can also decrease the total system
delay. The action of QTDU is determined by maximizing the

TABLE I
SIMULATION PARAMETERS

amount of the data collection, where the energy consumption
and delay are not considered. We can find that the overall fly-
ing distance of UAV with QEDU is less than that with QTDU.
This is because that QEDU considers the energy consumption
in its action decision. Thanks to the time saving of QEDU
to improve the system energy efficiency, QEDU outperforms
QTDU in terms of both the system delay and energy efficiency.

V. NUMERICAL RESULTS

In the simulation section, we employ the path-loss model as

L = 92.44+ 20× log10(L)+ 20× log10(f ) dB

where f is the system operating frequency and f = 2 GHz. The
unit of the distance between UAV and sensors L is kilometer
(km), and the unit of the frequency is GHz in the path-loss
model. We consider the fast fading as complex Gaussian dis-
tribution CN (0, 1 dB), and the shadow model as log-normal
distribution C(0, 5 dB). Unless otherwise specified, the sim-
ulation parameters are given in Table I. The minimal height
of UAV is denoted by β, and the available height of UAV is
determined by F = [1, 2, . . . , nH]× ζ .

For comparison, we take the traditional QTDU algorithm as
the compared algorithm to QEDU algorithm.

In Fig. 5, the performance of algorithms with J is illus-
trated. In Fig. 5(a), we compare the performance of QEDU
and QTDU in terms of data amount collected by UAV as in
(20). We can find that the data amount collected by UAV is
the same under the two algorithms because the UAV will con-
tinue to work until all the available data under the constraints
of αmin and γ0 have been collected. The same performance
can also be found in Figs. 6(a), 7(a), and 8(a). As J increases,
the performance increases due to the larger number of sensors
providing the larger amount of user data. In Fig. 5(b), we can
find that QEDU outperforms QTDU because on one hand, the
energy efficiency-aware UAV movement can largely decrease
the system delay. On the other hand, since the received amount
of sensor data is invariant under the two algorithms, QEDU
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Fig. 5. Performance of algorithms with J. (a) Overall collected data amount
versus J. (b) Data collection delay versus J. (c) Average energy efficiency
versus J.

can always outperform QTDU. By Fig. 5(b), we find that the
larger number of sensors leads to the higher data collection
delay due to the larger flying distance of UAV. In Fig. 5(c), we
can confirm that QEDU can save more energy than QTDU.
As J increases, the average energy efficiency monotonously
decreases due to the increased collected data amount is less
than the increased energy consumption.

In Fig. 6, we study the algorithms performance with the
different configurations of nH. As nH increases, the avail-
able number of the UAV hovering height increases. When nH

increases, the number of sensors covered by it increases. On

Fig. 6. Performance of algorithms with nH . (a) Overall collected data amount
versus nH . (b) Data collection delay versus nH . (c) Average energy efficiency
versus nH .

the other hand, as UAV height increases, the number of sen-
sors meeting the constraint of γ0 decreases. This indicates that
the performance gain brought by increasing nH is decreased
when nH is sufficiently large as shown in Fig. 4. Similar to
the cases in Fig. 3, in Fig. 4(a), the collected data amount
increases due to the increased number of sensors covered by
UAV. In Fig. 6(b), as nH increases, the data collection delay
increases because the UAV should spend more time for learn-
ing the UAV flight to collect the data. In Fig. 6(c), as nH

increases, the energy efficiency decreases under the configu-
ration in Table I. It is notable that if Pv and Ps are decreased
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Fig. 7. Performance of algorithms with γ0. (a) Overall collected data amount
versus γ0. (b) Data collection delay versus γ0. (c) Average energy efficiency
versus γ0.

by the improved UAV technologies, energy efficiency can also
increase as nH increases. We do not provide these simulation
results under the small Pv and Ps due to the page save.

In Fig. 7, we show the algorithms’ performance under differ-
ent configurations of γ0. It is obvious that when γ0 increases,
the number of sensors with SNR satisfying γ0 decreases. This
leads to the decrease of the collected data by UAV as in
Fig. 7(a). By the observation in Fig. 7(b), as γ0 increases,
the gap between the performance of QEDU and QTDU nar-
rows because the number of sensors with SNR meeting γ0
decreases, providing the less flexibility for QEDU to cut

Fig. 8. Performance of algorithms with ξ . (a) Overall collected data amount
versus ξ . (b) Data collection delay versus ξ . (c) Average energy efficiency
versus ξ .

down the delay by the energy-efficient movement of UAV. In
Fig. 7(c), we find that the average energy efficiency of QEDU
outperforms QTDU. This is because the UAV movement of
QEDU employs the energy-efficient reward function in (4).
The energy efficiency increases as γ0 increases due to the
decreased UAV working time for the data collection.

In Fig. 8, the impact of ξ on the Q-learning performance
is illustrated. As in Fig. 8(a), the amount of data collection
remains as ξ changes, because the amount of data collection
only depends on the values of αmin and γ0. As in Fig. 8(b),
as ξ increases, the data collection delay first falls and then
achieves the minimal value. As ξ further increases, the data
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collection delay increases. By Fig. 8(b), we can find the
optimal ξ to minimize the system delay. The reason behind
the above changes of the algorithms’ performance is that a
more frequent UAV movement based on the Q-function can
collect data with either energy-efficient awareness by QEDU
or throughput awareness by QTDU. However, the effective
guideline via the Q-table is limited, due to that the Q-table
is updated and extended slowly. On the other hand, a more
frequent UAV movement based on the data amount collected
in UAV cache can effectively updated the Q-table more faster.
However, the UAC flying actions are more frequently moti-
vated without the energy-efficient awareness and throughput
awareness, which may increase the flying time of UAV. In
Fig. 8(c), as ξ increases, the energy efficiency first increases
and then achieves the maximal value. As ξ further increases,
the energy efficiency decreases. This is because that the energy
consumption and delay are first decreased due to the Q-table
guideline and then increased by the more slowly updated
Q-table.

VI. CONCLUSION

In this article, we have studied Q-learning-based energy-
efficient data collection by UAV. We have proposed a frame-
work of a UAV-assisted wireless sensor network to collect
sensor data. By analyzing the states and actions of the UAV,
we formulated the Q-learning-based mechanism to collect sen-
sor data while improving the energy efficiency. Under different
scenarios, we have evaluated the performance of the proposed
learning mechanism and verified its effectiveness by extensive
simulations. In our future work, we will further consider the
scenario of multiple UAVs and investigate the cooperation of
multi-UAV for efficient data collection.
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