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Abstract
This article studies the application of artificial 

intelligence (AI) approach in UAV-assisted wireless 
networks to cope with a large number of param-
eters impacting energy-efficiency in the sixth gen-
eration wireless network. In order to improve the 
energy efficiency for UAV-assisted wireless net-
works, we focus on the following three aspects: 
the UAVs trajectory planning; caching, computing, 
and communication resource allocation of UAVs; 
and 3D hovering location decision of UAVs. We 
discuss each aspect and reveal the correspond-
ing optimization problem of energy efficiency. We 
also explore several promising deep-learning-based 
AI methods, which include pointer network, fed-
erated deep learning, and multi-agent deep deter-
ministic policy gradient, to solve these optimization 
problems. Through case studies, we verify the 
superiority of the proposed AI methods to save 
UAVs’ energy and decrease the system delay.

Introduction
Toward ubiquitous coverage and smart connec-
tion in the sixth generation (6G) wireless network, 
the traditional cellular networks with fixed topolo-
gy among base stations (BSs) have weak coverage 
for the network edge, especially for the scenarios 
of deserts, oceans, mountain areas, and so on. To 
extend the network edge, unmanned aerial vehi-
cles (UAVs) can provide a promising solution [1]. 
Configured with caching, computing, and commu-
nication (3C) resources, UAVs could be deployed 
to the network edge in a quick and effective man-
ner, where the heterogeneous wireless services 
can be provided in a real-time manner.

Deploying multiple UAVs in the wireless network 
will bring a large number of optimization parameters 
such as the UAVs’ flying paths and 3D locations, 
leading to difficulties in the network optimization. 
Recently, artificial intelligence (AI) has been deemed 
key to catering for the ever more complex and 
scaled wireless networks due to its powerful ability 
of data processing and analysis [2]. UAVs employ 
energy-limited onboard batteries for flying, hovering, 
and communication, resulting in a limited task dura-
tion and even poor performance. Thus, energy-effi-
cient UAV-based dynamic wireless networks with AI 
methods should be given special attention.

Based on the above challenges, there are 
three main research directions regarding UAVs’ 
energy efficiency: the UAVs’ trajectory planning, 
the 3C resource allocation of UAVs, and the 3D 
hovering location decision. To cope with the large 
number of parameters, combined with big data 
training, AI techniques including reinforcement 
learning (RL), federated learning (FL) and deep 
learning (DL), and so on can tame the network 
complexity and implement UAVs’ services in an 
energy-efficient manner.

A number of works have contributed to 
UAV-assisted network using traditional methods. 
In [3], Gong et al. investigated a UAV-based data 
collection mechanism for achieving the shortest 
flight time in an 1D wireless network. In [4], multi-
ple UAVs were employed to collect the data from 
Internet of Things (IoT) devices, where the UAVs’ 
trajectories were designed to maximize the min-
imum transmission rate of IoT devices. The work 
in [5] investigated fast UAV deployment problems 
considering different flying speeds, operating alti-
tudes, and wireless coverage radii of UAVs, where 
the maximum deployment delay among all UAVs 
and the total deployment delay were minimized.

As the scale and complexity of the optimiza-
tion problem increase, traditional methods require 
more human intervention to simplify and approxi-
mate the original problems, resulting in less adapt-
ability. AI methods allow UAVs to learn from past 
experiences and build a self-organized way to 
adapt to the network environment and achieve 
autonomous optimization to minimize human 
intervention. On the other hand, AI methods can 
analyze and process massive amounts of data and 
time-related data. Thus, they possess the potential 
to solve large-scale optimization problems, and to 
track and respond to the dynamics of networks 
to provide real-time services. Therefore, many 
researchers have turned to AI techniques.

Fu et al. [6] used a Q-learning-based algorithm 
to generate the UAV trajectory with wireless char-
gers for collecting data from users in grids. In [7], 
an RL-based method was proposed to optimize 
the deployment and trajectory of UAVs. The work 
in [8] used a multi-agent RL framework to design 
the UAVs’ trajectory and resource allocation in a 
downlink multi-UAV cellular network. Hu et al. [9] 
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investigated the UAVs’ trajectory in a decentral-
ized manner to coordinate the UAVs implement-
ing the real-time sensing application based on a 
multi-UAV Q-learning algorithm. The work in [10] 
used a deterministic policy gradient (DPG) algo-
rithm to learn the UAV trajectory without user-
side information.

To effi  ciently utilize the energy of UAVs, UAVs’ 
fl ying trajectory, the served users on the trajecto-
ry, and the 3C resource allocation of UAVs should 
be jointly optimized by choosing appropriate AI 
methods. The large number of parameters should 
be suffi  ciently revealed and learned to dynamical-
ly generate wireless networks by re-arrangement 
of UAVs’ hovering locations according to the 
requirements of data traffi  c.

Motivated by the above observations, this 
article focuses on the application of AI in UAVs’ 
services from the energy efficiency perspective. 
Based on UAV-assisted wireless networks, we spe-
cifi cally discuss three main research directions of 
UAVs’ services — the UAVs’ trajectory planning, 
3C resource allocation of UAVs, and 3D hover-
ing location decision — as well as the applications 
of deep-learning-based AI methods in them. The 
contributions of this article are as follows:
• We show the basic architecture of the UAV-as-

sisted wireless network, in which four aspects 
that primarily affect the performance of the 
UAVs are introduced, including air-to-ground 
channel, 3C resource carried by UAV, user pat-
tern, and re-arrangement of UAVs. Some fea-
sible AI approaches to solve the challenges in 
these aspects are also given. 

• For the complex optimization problems involv-
ing trajectory planning, 3C resource allocation, 
and 3D hovering location decisions of UAVs, 
we provide promising DL-based AI approach-
es to solve them, respectively, which are the 
pointer network (PN), federated deep learning 
(FDL), and multi-agent deep deterministic poli-
cy gradient (MADDPG). The architecture, prin-
ciples, and challenges of these AI approaches 
are introduced. 

• Based on two special case studies, we validate 
the eff ectiveness of DL-based AI approaches in 
solving complex UAV optimization problems. 
One case is UAVs’ flying path planning with 
PN; the other is UAVs’ 3D hovering location 
decision with MADDPG. Simulation results 
show that the AI approaches can improve the 
energy effi  ciency by increasing the data amount 
collected by the UAVs at shorter total fl ying dis-
tance and enhance the system throughput.
The remainder of this article is organized 

as follows. We first introduce the basics of the 
UAV-assisted wireless network. Then AI-based 
UAV optimization is discussed to provide UAVs’ 
services with energy effi  ciency awareness. Next, 
we study two special cases to verify the eff ective-
ness of the corresponding AI techniques. Finally, 
we conclude this article.

bAsIcs of uAV-AssIsted wIreless networks
As illustrated in Fig. 1, multiple UAVs as flying 
BSs to assist wireless networks can enable the 
enhancement of coverage, capacity, and connec-
tivity in remote areas, post-disaster emergency 
communication scenarios, IoT, and so on, or form 
mobile 3C resource pools to provide heteroge-
neous services such as hot content caching and 
edge computing. To achieve these benefits, the 
challenges lie in the three main research direc-
tions of UAV optimization, whose performance is 
primarily aff ected by the four aspects in UAV-as-
sisted wireless networks: air-to-ground (A2G) wire-
less channel, 3C resource carried by UAVs, user 
pattern, and re-arrangement of UAVs.

AIr-to-ground chAnnel
Lacking full knowledge of the specific environ-
ment, air-to-air (A2G) channels have been wide-
ly modeled as a probabilistic line-of-sight (LoS) 
model [11]. Such a model considers the impact of 
both LoS and non-line-of-sight (NLoS) on wireless 
channel gain. The probability of an LoS link occur-
rence between a UAV and a user is modeled as 
a sigmoid function (S-curve) with respect to , , 
and . Here,  and  are related to the statistical 
environment parameters such as the ratio of built-
up land area to the total land area.  represents 
the elevation angle from the user to the UAV. 
Thus, the total path loss between UAVs and users 
can be expressed as the expectation of path loss 
caused by LoS and NLoS links.

Considering the specific geographical envi-
ronments, the extensive measurements in real 
environments to build universally applicable 
wireless channel models and the corresponding 
parameters should be further revealed [1]. AI 
techniques such as generative adversarial net-
work (GAN), among others, can be eff ective to 
cater for the complex features of massive wire-
less channel parameters [12]. In GAN, two neu-
ral networks (NNs) are employed. One NN is 
used to generate the channel parameters, which 
are discriminated by the other NN. The real 
nonlinear channel can be well simulated when 
the two NNs reach the minimum Nash equi-
librium through training with the measurement 
of parameters. Such a method can reduce the 
complexity and improve the accuracy of chan-
nel modeling when the wireless channels exhibit 
extreme irregularity.

FIGURE 1. A UAV-assisted wireless network.
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3C Resources Carried by UAVs

In the heterogeneous services supported by the 
3C resources pool formed by UAVs, such as data 
collection, hot content caching, edge computing, 
wireless coverage, and capacity enhancement, 
two connotations exist: the different amount of 3C 
resources at a UAV and the different hovering loca-
tions of UAVs that constitute a dynamic wireless 
network with different 3C resource distribution. 
The DL-based AI approach enables the UAVs to 
collect and analyze wireless environment and user-
side information to predict their changes and pro-
vide a basis for intelligent 3C resource allocation.

Combining the advantages of deep neural 
network (DNN) and recurrent neural network 
(RNN), the deep echo state network (ESN) has 
the capability to process massive amounts of 
time-related and high-dimensional data to cap-
ture dynamic temporary information of users [13]. 
Hence, it can be used to predict the content of 
interest to users and then cluster the users with 
high similarity of requested content so that the 
cache resources of UAVs can be allocated effi-
ciently. In similar fashion, deep ESN can be used 
to predict the requirements of classified computa-
tional tasks, thus enabling UAVs to schedule com-
putational resources reasonably and quickly to 
reduce latency. Combined with DNN, the deep 
reinforcement learning (DRL) approach enables 
UAVs to learn the channel characteristics and 
user behavior from the interactions with the wire-
less environment and ground users. Then UAVs 
can find the optimal policy to make 3D deploy-
ment decision, channel selection, spectrum divi-
sion, power allocation, and user association.

User Pattern
The user pattern contains two parts, which are the 
user distribution and the user dynamics. When 
users to be served by UAVs present uneven dis-
tribution, a common and efficient pre-processing 
method is traffic-oriented user clustering according 
to the heterogeneous traffic requirements, where 
several intelligent clustering algorithms such as 
K-means and density-based spatial clustering of 
applications with noise (DBSCAN), among others, 
can be employed [2]. As an instance, unlike the 
traditional clustering algorithms generating circular 
clusters, DBSCAN employs a density threshold to 
generate clusters with different shapes according 
to the user distribution and traffic requirements.

By user clustering algorithms, a UAV can hover 
above a cluster to serve the users simultaneously. 
From the viewpoint of energy efficiency, the number 
of users in a cluster and the coverage range of the 
cluster largely impact the energy consumption of 
wireless transmission between the UAV and users. A 
large number of users in a cluster will also increase 
the system complexity and the number of antennas 
at a UAV. This will increase the energy consump-
tion. Hence, parameters such as the maximum num-
ber of users per cluster and the maximum distance 
between two arbitrary users in a cluster should be 
jointly considered in intelligent clustering algorithms.

Traditionally, the number of users and user dis-
tribution in networks are generally fixed. However, 
toward 6G, in IoT networks and so on, the require-
ments of users, the number of users, and the loca-
tions of users may be dynamically generated and 

rapidly changing. The high user dynamics pose a 
significant impact on the optimization of UAV-as-
sisted wireless networks, such as UAVs’ serving path 
and hovering location invalidation, outdated cached 
hotspot content, wasted computational resources, 
and unreasonable allocation of communication 
resources. To address these issues, the deep ESN 
method can track the users in real time with the 
flexibility of UAVs and collect the time-related infor-
mation such as user mobility and content requests 
to predict the user location and content caching at 
UAVs in the next time slot. Thus, the planning and 
optimization of the UAV-assisted wireless network 
can be dynamically implemented to provide real-
time and reliable services.

Rearrangement of UAVs
One trade-off in controlling and re-arranging UAVs 
as different UAV-based dynamic wireless networks 
is the number of rearrangements and the main-
tenance time for one wireless network topology. 
Under the constraint of the maximum available 
energy of a UAV, the larger number of rearrange-
ments can bring more topologies of UAV-based 
wireless networks. This can provide 3C resources 
to serve users with higher energy efficiency and 
lower delay. However, after the serving time of a 
wireless network, UAVs will consume a configura-
tion time for the rearrangement, where UAVs will 
fly to updated hovering locations; the UAVs cannot 
provide services during the configuration time. This 
suggests that when the UAVs frequently update 
the wireless network topologies, the available total 
serving time will be decreased under the constraint 
of the maximum available energy of a UAV.

Such a trade-off leads to new parameters that 
should be optimized. UAVs’ cooperation to form a 
computing pool supporting part of the computing 
load for machine learning will be further studied 
in future work. One possible AI method is multi-
agent RL, such as multi-agent deep deterministic 
policy gradient (MADDPG), which is a potential 
tool to manage a great number of UAVs [14]. By 
MADDPG, multiple UAVs can be trained centrally 
with the same target to learn the optimal policy 
based on the data of all UAVs. Then UAVs perform 
actions in an independent and decentralized man-
ner, based on which an intelligent UAV swarm with 
strong flexibility and stability can be formed.

AI-Based UAV Optimization
In this section, we focus on the potential of 
DL-based AI methods in solving complex multi-
UAV optimization problems, involving the flying 
path planning, 3C resource allocation, and 3D 
hovering location decision of UAVs. Aimed at 
these problems, suitable DL methods are intro-
duced separately, including their architectures, 
principles, and challenges.

Flying Path of UAVs
Assume that there are several clusters of users 
distributed on the ground requesting data collec-
tion services from UAVs. Each user cluster on the 
ground is treated as a node. When the user clus-
ters to be served by a UAV are pre-determined, 
optimizing the paths to minimize the total flying 
distance of the UAVs can be directly modeled as a 
traditional traveling salesman problem (TSP) model, 
which can be solved easily by a genetic algorithm.

Traditionally, the num-
ber of users and user 

distribution in networks 
are generally fixed. 

However, toward 6G, 
in IoT networks and 

others, the requirements 
of users, the number 

of users, and the loca-
tions of users may be 

dynamically generated 
and rapidly changing.
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However, in practice, the limitation of UAVs’ 
energy leads to being able to serve only a set of 
user clusters. On the other hand, to select the set 
of user clusters for UAVs’ serving, the traffic pri-
orities, serving time, and so on, should be jointly 
considered, where the selection of user clusters 
and UAVs’ flying trajectory will be integratedly 
optimized. To cope with such an integrated opti-
mization problem, fi rst, a user cluster will be given 
a weight value that denotes the priority of the user 
cluster to be served by a UAV. Then, constrained 
by the maximum total available serving time of a 
UAV determined by its maximum energy, the user 
cluster selection for UAVs’ serving can be mod-
eled by a knapsack problem (KP) to maximize the 
sum weight values of the served user clusters.

KP and TSP can be combined as the optimiza-
tion problem of UAVs’ serving, defi ned as an ori-
enteering problem (OP). Denote the initial set of 
all the user clusters by CA. To solve the problem 
of OP, we should fi nd an appropriate AI algorithm 
to generate a set of user clusters denoted by CI
that need to be served and the order of service 
for an arbitrary UAV i. A PN based on RNN can 
be effectively migrated to solve the OP due to 
its features of adaptability in handling time- or 
sequence-dependent problems [15].

As shown in Fig. 2, PN mainly consists of an 
encoder and a decoder, which are composed of one 
or more layers of long short-term memory (LSTM) 
networks. To obtain the path of an arbitrary UAV 
i, the total set of nodes CA, as the input sequence, 
is encoded into intermediate vectors via feature 
extraction by the encoder. According to the atten-
tion mechanism, diff erent weights are assigned to the 
hidden states of the encoder and decoder, where the 
weights are the network parameters to be trained. 
Based on the assigned weights, the probability distri-
bution of the input nodes is then obtained using the 
softmax function. Finally, the output sequences (i.e., 
the service nodes and service order Ci of UAV i) are 
decoded from intermediate vectors by the decoder.

Although PN off ers a promising solution for UAV 
path planning, there are still some challenges. First, in 
the scenario with a wireless charger to alleviate the 

energy shortage of UAVs, the placement of char-
gers should be studied before implementing PN for 
UAVs’ fl ying trajectories. Such planning involves com-
plex factors including the average user distribution, 
geographical conditions, a UAV’s maximum avail-
able energy, and so on. Second, obstacle avoidance 
among UAVs should be considered in the PN. Fur-
thermore, when the traffi  c of a user cluster has been 
served by a UAV, the user will not be served again. 
This suggests that the required amount of 3C resourc-
es will be balanced among UAVs in the PN model, 
which will be an open problem in future work.

3c resource AllocAtIon of uAVs
The task-oriented clustering of users is performed 
based on the demand for 3C resources. The het-
erogeneous service requirements can be satisfied 
through UAVs’ rearrangement, where 3C resources 
will be re-allocated according to the traffi  c require-
ments to minimize the energy consumption and sys-
tem delay. Toward the highly dynamic network in 
6G, the number of users and traffic requirements 
change in real time. 3C resource allocation should 
be implemented based on the heterogeneous traffi  c 
demand, time-varying user distribution, and so on.

DL-based AI algorithms can enable UAVs to 
predict the dynamic traffic requirements and user 
distribution. However, the existing DL algorithms 
are generally implemented in a centralized manner, 
which challenges the protection of the private data. 
On the other hand, the processing and wireless 
transmission of a large amount of data for the central 
computing in DL lead to large latency, invalidating 
the real-time predictions. By combining FL and DL, 
a distributed DL framework, federated deep learning 
(FDL), can be formed to tackle this challenge [14].

As in Fig. 3, K UAVs constitute a set of FDL 
participants  = {1, 2, …, K}. Each UAV k   has 
a local dataset LDSk for local training containing 
private data such as user location, user behavior, 
UAV location, and so on. By using the local dataset 
LDSk, UAV k trains a local model LMk and sends the 
model parameters to the FDL server. All received 
local models LMk are aggregated into a global 
model GM = iLMk through aggregation algo-

FIGURE 2. UAV fl ying path planning based on a pointer network.
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rithms such as FedAvg. To update the parameters 
of the global model GM, an FDL server sends GM
as a shared model back to each UAV to guide the 
next round of local model training. Based on the 
distributedly iterative learning, FDL can effectively 
decrease the system delay and safeguard the data 
privacy, because the parameters of the trained local 
models are sent to the FDL server instead of send-
ing a large amount of parameters and data. By FDL, 
3C resources of UAVs can be efficiently allocated 
to the network in a dynamic and real-time manner.

However, FDL also faces challenges in robust-
ness and convergence. In terms of robustness, 
UAVs may drop out of the FDL training due to 
deteriorated channel conditions and energy short-
age. Thus, FDL needs to be able to predict such 
situations and keep the training results valid. In 
terms of convergence, the distributed learning 
and the different configured 3C resources of 
UAVs make FDL convergence diffi  cult. These two 
challenges contribute to an open problem of 3C 
resources allocation based on FDL to maximize 
energy effi  ciency and minimize latency.

3d hoVerIng locAtIons of uAVs
When a UAV arrives over a user cluster to be 
served, the 3D hovering location of the UAV 
needs to be carefully designed to optimize the 
A2G channel gains between the UAV and users. 
Thus, the communication between the UAV and 
users can achieve a large signal-to-noise ratio to 
improve the system throughput.

For the given environment parameters, A2G 
channel gain based on the probabilistic LoS model 
can be maximized by the optimal elevation angle 
between the UAV and the user when only a single 
user exists. However, when multiple UAVs serve 
a user cluster with multiple users, the optimization 
of 3D hovering locations for UAVs is still an open 
problem. Furthermore, when the wireless interfer-
ence among users is considered, the problem will 
be more complex. In this case, finding the opti-
mal hovering locations of UAVs is intractable, and 
appropriate AI algorithms adaptive to the large num-
ber of parameters should be studied in future work.

Reinforcement learning enables UAVs to learn 
from past experiences and make intelligent decisions 
[2]. To compress the state and action spaces of RL, 
DNNs are used to approximate the value function. 
Then a framework of DRL can be achieved to han-
dle high-dimensional continuous variables, includ-
ing UAVs’ hovering locations and velocities, wireless 
transmitting power, and so on. As shown in Fig. 4, 
the MADDPG is employed to learn the optimal 3D 
hovering locations and power allocation for the UAV-
based dynamic wireless network. Each UAV has a 
DDPG network, consisting of an evaluation network 
and a target network, each of which has an actor-crit-
ic network. The actor network implements the map-
ping from states to actions, while the critic network 
scores the actions outputted by the actor [14].

To ensure the effectiveness of joint training 
of multiple agents, centralized control is required 
where the states and actions of other agents need 
to be considered in the critic network of each 
agent. Once the training is completed, each agent 
can execute the action only according to their own 
state. Take UAV i for example; at time step t, UAV 
i observes a state st of the current location, and 
then obtains a reward rt from the environment, 

which is designed based on the specifi c objective 
such as maximizing throughput. For a state st, the 
actor network outputs an action at of the UAV’s 
displacement to the next location and the allocated 
power for users. By executing the action at, UAV i
transfers to the next state st+1. The corresponding 
tuple of (st, at, rt, st+1) is stored as an experience in 
the reply buff er. Only the evaluation network will 
be trained by mini-batch gradient descent using the 
sampled experiences from the replay buffer. The 
target network is updated by copying a fraction of 
the parameters from the evaluation network.

In addition to the issues of low sample utilization 
and complex reward function design that DRL inher-
ently carries, some challenges remain for DRL to be 
applied in the 3D deployment of UAVs. For instance, 
the high dynamics of the network, especially the 
mobility of the users, lead to the static deployment of 
UAVs losing optimality. Therefore, dynamic deploy-
ment of UAVs is claimed so that UAVs can maintain 
optimal performance by adjusting their 3D hovering 
locations and power allocation according to the loca-
tions of users and traffi  c requirements in real time.

FIGURE 3. The learning process of UAV resource reconfi guration based on 
federated deep learning.
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Case Study

Multi-UAV Flying Path

We assume that U nodes denoting user clusters 
are randomly distributed in a 1 km  1 km area, 
each node with a randomly data amount with the 
unit of gibabit as a weight value. We consider 
the scenario in which three UAVs provide uplink 
data collection services for these nodes. Due to 
the energy limitation, the three UAVs can only 
serve some of the U nodes before returning to 
the depot, where UAVs can be charged and the 
data can be offloaded.

The general expression for energy efficiency 
(EE) is the ratio of system throughput to energy 
consumption. In this case, we can ignore the ener-
gy consumed by the data transmission between 
the UAVs and user nodes because the commu-
nication power is generally much smaller than 
the propulsion power of the UAVs. Assume that 
the energy consumed by the UAVs per kilometer 
of flight is fixed. To improve the EE of UAVs, we 
simultaneously maximize the total amount of col-
lected data, denoted by DAall, and minimize the 
total flying distance of the UAVs, denoted by FDall 
through a PN with active search (PN-AS) policy.

In PN-AS, the nodes are formed into multi-
ple batches of input sequences though permu-
tation and combination, and then inputted into 
PN for training. The first and last nodes in output 
sequences are fixed to satisfy the constraint that 
the UAVs both start and end at the depot. The 
idea of Tabu Search is adopted to avoid repet-
itive services. Three baseline methods are used 
to compare the performance: the PN with greed 
prize (PN-GP) policy, genetic algorithm (GA), and 
the traditional PN without policy, respectively. 
In PN-GP and GA, the nodes with the largest 
amount of data are first selected, and then the 
serving order of these nodes is optimized by PN 
and GA, respectively.

In Table 1, we give the DAall, FDall, and EE 
of the three UAVs according to the flying paths 
planned by the methods of PN-AS, GA, PN-GP, 
and PN with U = 50 and U = 100, respectively. 
Comparing PN, we can observe that the tradi-
tional PN has the poorest performance, which 
suggests that PN needs to combine appropriate 
policies for better performance. We can also 
observe that based on GA and PN-GP, the UAVs 
can serve the nodes with the largest amount of 
data. Thus, GA and PN-GP are able to collect the 
largest data amount. However, this may lead to 
an increase in the flying distance of UAVs and 
complete loss of user fairness. PN-AS is close to 
GA and PN-GP in terms of data amount with 
shorter flying distance of UAVs. This is because 

PN-AS considers both the joint optimization of 
maximizing the data amount and minimizing the 
flying distance of UAVs. Hence, PN-AS has the 
best energy efficiency. Additionally, the user fair-
ness of PN-AS can be improved compared to that 
of PN-GP.

Multi-UAV 3D Hovering Locations
We consider a 4 km  4 km area with four user 
clusters distributed in the four quadrants, each of 
which has 100 users. We assume that four UAVs 
are dispatched to provide downlink services for 
each user cluster. The probabilistic LoS channel 
model is adopted. We consider the urban envi-
ronmental parameters [11].

To improve the EE of UAVs in this case, which 
is dealt as the ratio of the system throughput to 
the total transmitting power of the UAVs, we use 
MADDPG to learn the distribution of users and the 
channel conditions, based on which the UAVs can 
find the optimal 3D hovering locations and power 
allocation that maximizes the system throughput. 
Thus, given a fixed total transmitting power of the 
UAVs, the EE is also maximized.

To apply MADDPG, we design the system EE 
as the body of the reward function plus the con-
straints in the model (e.g., serving area limit, trans-
mitting power limit, distance limit for arbitrary two 
UAVs) as additional penalty reward, the UAVs’ 3D 
locations as the state, and the UAVs’ displacement 
to the next state and the power allocation as the 
action. We compare the MADDPG-based 3D 
deployment with two traditional methods: altitude 
optimization (AO) and GA. In AO, the horizontal 
locations of the UAVs are fixed in the center of 
the user clusters, and the users are allocated equal 
power. Then the UAVs’ altitudes are optimized by 
gradient descent. In GA, the 3D locations of the 
UAVs are optimized with equal power allocation.

In Table 2, we demonstrate the optimal 3D 
deployment and EE of the four UAVs providing 
downlink traffic for the four user clusters derived 
by MADDPG, GA, and AO, respectively. We 
observe that compared to AO and GA, the MAD-
DPG-based 3D deployment of UAVs results in a 
significant increase in EE. This is because MAD-
DPG enables the UAVs to learn the features of 
the user distribution and wireless channel in the 
3D direction to optimize not only the 3D hovering 
locations but also the high-dimensional power allo-
cation variables with the objective of maximizing 
the system throughput and EE. We also observe 
that the UAVs’ altitudes in AO are generally much 
higher than in MADDPG and GA. This is because 
the UAVs’ horizontal locations are fixed in AO. 
Then the UAVs have to fly higher to cover the 
ground users under the limitation of the minimum 
elevation angle between users and a UAV.

TABLE 1. The simulation results of the multi-UAV flying path case.

Method
U = 50 U = 100

DAall (Gb) FDall (km) EE (bit/J) DAall (Gb) FDall (km) EE (bit/J)

PN-AS 23.64 11.6066 6.79  104 46.92 16.3550 9.57  104

GA 25.68 12.6440 6.77  104 51.60 18.6348 9.23  104

PN-GP 25.68 12.6632 6.75  104 51.60 18.7232 9.18  104

PN 13.85 14.5041 3.18  104 25.28 29.9044 2.82  104
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Conclusion
This article has studied an AI-based energy-efficient 
UAV network for 6G. We have studied the energy 
efficiency from multiple significant aspects. First, 
we have studied the combined KP and TSP prob-
lem in UAVs’ flying paths, where pointer network 
deep learning was used to generate the UAVs’ 
trajectory. Second, we have studied 3C resource 
allocation for UAVs, where federated deep learn-
ing is discussed. We propose the FDL-based 3C 
resource allocation for maximizing energy efficien-
cy and minimizing latency as an open problem, 
which will be further investigated in our future 
work. Third, we have studied the 3D hovering 
locations of UAVs, where MADDPG is used to 
determine the optimal 3D hovering locations of 
UAVs. These can improve the energy efficiency of 
UAVs’ dynamic wireless networks from different 
aspects. Finally, in a case study, we have also veri-
fied the effectiveness of our proposed AI methods.
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TABLE 2. The simulation results of the multi-UAV 3D hovering location case.

Method

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Deployment 
(km)

EE 
(bps/W)

Deployment 
(km)

EE 
(bps/W)

Deployment (km)
EE 

(bps/W)
Deployment 

(km)
EE 
(bps/W)

MADDPG (1.31, 1.22, 0.26) 5.55  109 (–0.72, 1.31, 0.24) 5.48  109 (–0.79, –0.67, 0.23) 5.22  109 (1.33, –0.70, 0.24) 5.26  109

GA (1.31, 1.19, 0.27) 5.28  109 (–0.71, 1.26, 0.28) 5.18  109 (–0.75, –0.72, 0.35) 4.93  109 (1.36, –0.72, 0.29) 4.93  109

AO
(1.00, 1.00, 

0.52)
4.35  109 (–1.00, 1.00, 

0.55)
4.15  109 (–1.00, –1.00, 0.57) 4.13  109 (1.00, –1.00, 0.54) 3.68  109
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