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Abstract—In this paper, we propose a novel two-dimensional
(2D) generalized optical spatial modulation (GOSM) scheme for
multiple-input multiple-output optical wireless communication
(MIMO-OWC) systems. By grouping two successive time slots as
one time block, 2D GOSM mapping can be performed not only
in the space domain but also in the time domain. Specifically, two
types of 2D GOSM mapping schemes are designed, including 2D-
1 and 2D-2 GOSM mappings. Moreover, to address the high com-
plexity issue of optimal joint maximum-likelihood (ML) detection
and the noise amplification and error propagation issues of zero-
forcing-based ML (ZF-ML) detection, a deep neural network
(DNN)-aided detection scheme is further proposed for 2D GOSM
systems. Simulation results demonstrate the superiority of the
proposed 2D GOSM scheme with deep learning-aided detection
for high-speed and low-complexity MIMO-OWC systems.

Index Terms—Optical wireless communication, multiple-input
multiple-output, deep learning.

I. INTRODUCTION

ITH the booming growth of mobile users in the coming
Wyears, the generated enormous data traffic will be far
beyond the capacity of existing radio-frequency (RF) commu-
nication techniques. Thanks to its many inherent advantages
such as abundant license-free spectrum and no electromagnetic
interference radiation, optical wireless communication (OWC)
has been envisioned as a promising complementary technol-
ogy to alleviate the spectrum crunch [1]. In OWC systems
using light-emitting diodes (LEDs) as optical transmitters, the
available modulation bandwidth is usually small and hence the
achievable capacity of OWC systems is greatly limited [2].

For a given modulation bandwidth, the capacity of OWC
systems can be enhanced by improving the spectral efficiency
of the system. So far, various techniques have been proposed to
improve the spectral efficiency of bandlimited OWC systems.
Particularly, by fully exploiting the spatial-domain resources,
multiple-input multiple-output (MIMO) transmission has been
widely shown as a promising technique for bandlimited OWC
systems [3], [4]. As a digitized MIMO scheme, optical spatial
modulation (OSM) has attracted great interest recently, owing
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to its negligible inter-channel interference, high power effi-
ciency and low transceiver complexity [5], [6]. Nevertheless, it
is very challenging for OSM systems to achieve a high spectral
efficiency. In order to enhance the spectral efficiency of OSM,
generalized OSM (GOSM) schemes have been further pro-
posed, which activate more than one LED to transmit the same
constellation symbol at each time slot [7], [8]. Besides spectral
efficiency enhancement, GOSM can also provide substantial
spatial diversity to increase the signal-to-noise ratio (SNR) of
the received constellation symbols. However, in all the existing
GOSM systems, the GOSM mapping is one-dimensional (1D)
which is generally performed in the spatial domain only.

In this paper, we for the first time propose and investigate
a novel two-dimensional (2D) GOSM scheme for bandlimited
MIMO-OWC systems. By grouping two successive time slots
as one time block, GOSM mapping can be performed in both
the spatial domain and the time domain. More specifically,
two types of 2D GOSM mapping schemes, i.e., 2D-1 and
2D-2 GOSM mappings, are designed within one time block.
Moreover, three detection schemes, including joint maximum-
likelihood (ML) detection, zero-forcing-based ML (ZF-ML)
detection and deep neural network (DNN)-aided detection,
are further proposed. It has been shown that the DNN-aided
detection is able to mitigate the adverse effects of both noise
amplification and error propagation suffered by the ZF-ML
detection, while achieving near optimal performance as the
joint ML detection with low computational complexity [8],
[9]. Numerical simulations are conducted to evaluate and
compare the performance of the conventional 1D GOSM and
the proposed 2D GOSM with different detection schemes.

II. SYSTEM MODEL

A typical MIMO-OWC system is considered here, which
is equipped with N; LEDs and N, photo-detectors (PDs).
Letting s = [s1, 52, -+ ,sn,]T represent the transmitted signal
vector, H denote the IV, x N; MIMO channel matrix and n =
[n1,m9, -+ ,nn,]T be the additive noise vector, the received
signal vector y = [y1, %2, ,¥n,]? can be given by

y=Hs+n, (1
where the MIMO channel matrix H can be expressed by
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Fig. 1. Schematic diagram of the proposed 2D GOSM system.

where h,; denotes the direct current (DC) channel gain be-
tween the ¢-th LED and the r-th PD with r = 1,2,--- | N,.
and t = 1,2,--- , N;. Without loss of generality, we assume
that each LED follows the Lambertian radiation pattern and
only the line-of-sight (LOS) transmission is considered. It is
generally reasonable to neglect the non-LOS component since
the non-LOS component usually has much lower electrical
power than that of the LOS component during most channel
conditions [3]. Thus, h,; can be calculated by

[+ 1)pA
hrt - %COSI(QPm)Ts (ert)g(ert)cos(ert)a (3)
2mdz,
where | = —In2/In(cos(¥)) represents the Lambertian emis-

sion order and ¥ is the semi-angle at half power of the LED;
p and A denote the responsivity and the active area of the
PD, respectively; the distance, the angle of emission and the
angle of incidence between the ¢-th LED and the r-th PD
are expressed by d¢, .+ and 0,, respectively; Ts(6,) is the
gain of optical filter; g(6,¢) = % is the gain of optical lens,
where n and ® denote the refractive index and the half-angle
field-of view (FOV) of the optical lens, respectively.

In typical MIMO-OWC systems, the additive noise consists
of shot noise, thermal noise and possibly excess noise, which
can be generally modeled as a real-valued additive white Gaus-
sian noise (AWGN) with zero mean and power P, = NyB,
where Ny and B indicate the noise power spectral density
(PSD) and the signal bandwidth, respectively.

III. 2D GOSM FOR OWC

In this section, we first introduce the principle of 2D GOSM
and then three spatial mapping schemes are described. Finally,
three detection schemes for 2D GOSM are described.

A. Principle of 2D GOSM

Fig. 1 illustrates the schematic diagram of the proposed 2D
GOSM system, where M -ary pulse amplitude modulation (M -
PAM) is adopted. For M -PAM modulation, the intensity levels
can be expressed as I, = % (m=1,---,M). It can be
seen that the input bits are first divided into two parts, i.e., the
constellation part and the spatial part, which are then mapped
into a PAM symbol vector ¢ and a spatial index vector v,
respectively. Subsequently, 2D GOSM mapping is executed to
generate the transmitted signal vector s. At the receiver side,
2D GOSM detection, including the joint ML detection, the
ZF-ML detection and the DNN-aided detection, is performed

to yield the final output bits.

B. Three Spatial Mapping Schemes

In this subsection, three spatial mapping schemes are in-
troduced, including conventional 1D spatial mapping and two
novel 2D spatial mapping schemes, i.e., 2D-1 spatial mapping
and 2D-2 spatial mapping.

1) ID Spatial Mapping: Fig. 2(a) shows the principle of
conventional 1D spatial mapping, where N out of Ny LEDs
are activated to transmit the same A/-PAM symbol at each
time slot, taking Ny = 4 and N = 2 for example. As a
result, there are C'(Ny, N) possible LED activation patterns
and |log, C(N¢, N)| spatial bits can be transmitted, where
C(-,-) denotes the binomial coefficient and |-]| represents the
floor operation. Hence, the spectral efficiency (bits/s/Hz) of
1D GOSM systems using M -PAM modulation is given by

Rip = logy M + [logy C (N, N)|. 4

2) 2D-1 Spatial Mapping: Fig. 2(b) depicts the principle
of 2D-1 spatial mapping, where two successive time slots are
grouped as one time block. Specifically, for each time slot
within a given time block, N out of N; LEDs are activated to
transmit the same 1/ -PAM symbol and 2D-1 spatial mapping
is executed over two successive time slots within each time
block. Taking the first time block 7; as an example, there are
C(Ny, N) possible LED activation patterns for both time slots
t1 and to. Hence, the total number of possible LED activation
patterns over two time slots ¢; and t5 within the time block
71 is given by (C (N¢, N))2. Moreover, two different M-PAM
symbols can be transmitted in the two time slots within one
time block. Therefore, assuming M;-PAM and M5-PAM are
respectively adopted in the first and the second time slots
within each time block, the spectral efficiency (bits/s/Hz) of
2D-1 GOSM systems is obtained by

1 1
Ropg = 3 log, (M M;) + 3 [21log, C(Ny, N) . (5)

3) 2D-2 Spatial Mapping: The principle of 2D-2 spatial
mapping is shown in Fig. 2(c). Similarly, two successive time
slots are grouped as one time block and two different M-
PAM symbols, i.e., M;-PAM and M>-PAM, are transmitted
in the first and the second time slots within each time block,
respectively. Differing from 2D-1 spatial mapping where N
out of Ny LEDs are activated to transmit signal at each time
slot, the number of activated LEDs in each time slot is not
fixed in 2D-2 spatial mapping and only the total number of
activated LEDs within each time block is fixed. Specifically,
for each time block, 2N out of totally 2/N; LEDs are activated
to transmit signals and the number of activated LEDs at two
time slots within the time block can be different. Thus, for
2D-2 spatial mapping, there are totally C (2N, 2N) possible
LED activation patterns within one time block. Note that there
should be at least one activated LED to transmit signal at each
time slot within the time block, to ensure the successful trans-
mission of constellation symbols. Consequently, the spectral
efficiency (bits/s/Hz) of 2D-2 GOSM systems is given by

1 1
Rop, = 3 log, (M, M>) + §Uog2 C(2N,2N)].  (6)
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Fig. 2. Principle of (a) 1D GOSM, (b) 2D-1 GOSM and (c) 2D-2 GOSM, where Ny =4 and N = 2.
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Fig. 3. Schematic diagram of the DNN-aided detection.

C. Three Detection Schemes for 2D GOSM

1) Joint ML Detection: Assuming perfect knowledge of the
channel, joint ML detection is the optimal detection scheme
for 2D GOSM systems using M -PAM modulation. Under joint
ML detection, the transmitted signal vector s is estimated by

é:argmsiIlHY*HSHz, (7
where || - || denotes the Euclidean norm. Although joint ML
detection can achieve optimal performance, its computational
complexity is relatively high and hence it might not be feasible
in practical applications.

2) ZF-ML Detection: In comparison to the joint ML de-
tection, ZF-ML detection achieves sub-optimal performance
with much reduced computational complexity [9]. To apply
ZF-ML detection in 2D GOSM systems, ZF equalization is
first performed on the received signal vector y and thus the
estimate of the transmitted signal vector s is expressed by

$sp = H'y =s+ H'n, (8)
where HY = (H*H) ' H* denotes the pseudo inverse of H.
After that, both the spatial index vector and the constellation
symbol vector can be obtained from Sz via ML detection.
Despite its low computational complexity, ZF-ML detection
suffers from the adverse effects of both noise amplification
and error propagation [4], [10].

3) DNN-Aided Detection: In order to simultaneously ad-
dress the high complexity issue of joint ML detection and
the noise amplification and error propagation issues of ZF-
ML detection, a DNN-aided detection scheme is proposed for

2D GOSM systems. Fig. 3 depicts the schematic diagram of
the DNN-aided detection scheme, which mainly consists of a
pre-processing module, a DNN module and a decision module.
The pre-processing module is used to perform ZF equalization
on the received signal vector y so as to get the input vector
of the DNN module. The DNN module contains one input
layer, three hidden layers and one output layer. For the 2D
GOSM systems with NV; LEDs, the input vector contains all the
2N, symbols within one time block and hence the input layer
contains K = 2N, neurons. Moreover, three fully connected
hidden layers are used to learn the statistical characteristics
of both the input signal and the additive noise. Note that the
number of hidden layers and the number of neurons adopted
in each hidden layer are obtained after multiple trials, which
can ensure that the DNN achieves satisfactory performance.
The number of neurons in the /-th (I < ! < 3) hidden
layer is denoted by S; and the rectified linear unit (ReLU)
function, i.e., freru(®) = max(0, @), is used as the activation
function. For the output layer, it consists of R neurons,
which is corresponding to the number of bits that can be
transmitted during one time block, and the Sigmoid function,
i.e., fsigmoia(a) = 1/(1+exp™®), is adopted as the activation
function to map the output into the interval (0,1).

In addition, the decision module is utilized to generate the
final binary bits. Letting z5 = [21,22, - ,2r|? be the input
of the decision module, the estimated bit information i, (1 <
q¢ < R) can be obtained by

zq < 0.5,
! 9

, 2¢ 2> 0.5.

Finally, we exploit the mean-squared error (MSE) loss function
to measure the difference between the transmitted bit vector
u and the estimated bit vector @i, which is denoted by

1
EMSE = EH a—u | (10)

IV. SIMULATION RESULTS

In this section, simulations are performed to evaluate the
performance of the proposed 2D GOSM systems using differ-
ent detection schemes with different spectral efficiencies. In
our simulations, we consider a 4x4 MIMO-OWC system in



TABLE I
SIMULATION PARAMETERS

Parameter Value

Room dimension 4mx4mx3m

LED spacing 2 m
APD spacing 15 cm
Semi-angle at half power of LED 65°
Gain of optical filter 0.9
Refractive index of optical lens 1.5
Half-angle FOV of optical lens 65°
Responsivity of APD 15 A/W
Height of receiving plane I m
Active area of APD 19.6 mm?2
Noise PSD 10722A%/Hz
Modulation bandwidth 20 MHz
Number of LEDs 4
Number of activated LEDs 2
Number of APDs 4

Receiver location (1.5m, 1.5m, 1 m)

TABLE IT
PARAMETERS OF DNN-AIDED DETECTORS

Parameter 4 bits/s/Hz 5 bits/s/Hz
number of training set 200000 600000
1D number of neurons 20-24-20 120-128-120
mini-batch size 100 200
number of training set 300000 400000
2D-1 number of neurons 34-40-34 74-80-74
mini-batch size 100 100
number of training set 400000 500000
2D-2 number of neurons 60-64-60 120-128-120
mini-batch size 200 200
TABLE III
PAM ORDER OF DIFFERENT SCHEMES
Scheme 4 bits/s/Hz 5 bits/s/Hz
1D M =4 M =38
2D-1 My =2, Ma=4 My =4, Mz =8
2D-2 Mip =2, My =2 My =4 My=4

a typical 4 m x 4 m X 3 m room. The 2 x 2 LED array
is mounted at the center of the ceiling and the height of the
receiving plane is 1 m. The key simulation parameters are
listed in Table I. In order to accelerate the convergence speed,
the mini-batch technique is employed in the training phase and
the learning rate is 0.01. Moreover, the validation set includes
5 x 10* randomly generated symbol vectors and Adamax is
used as optimizer. The parameters of the DNN-aided detectors
for 1D, 2D-1 and 2D-2 GOSM systems are summarized in
Table II. According to (4), (5) and (6), the required PAM
orders of 1D, 2D-1 and 2D-2 GOSM systems to achieve target
spectral efficiencies of 4 and 5 bits/s/Hz are given in Table III.
Moreover, we evaluate the bit error rate (BER) performance
with respect to the transmitted SNR in the simulations and the
reason can be found in [4].

A. MSE Loss

We first analyze the MSE loss of the proposed DNN-aided
detector and the results are given in Fig. 4. As we can see, the
MSE decreases rapidly with the increased number of epochs

| —e—1D, 4 bits/s/Hz, 126 dB | |
: —e—2D-1, 4 bits/s/Hz, 123 dB
—e—2D-2, 4 bits/s/Hz, 121 dB
——1D, 5 bits/s/Hz, 131 dB
0.4 ——2D-1, 5 bits/s/Hz, 125 dB |

—>—2D-2, 5 bits/s/Hz, 124 dB

Fig. 4. MSE loss vs. epoch for the proposed DNN-aided detector.

for 1D, 2D-1 and 2D-2 GOSM systems with different spectral
efficiencies and training SNRs. Here, training SNR represents
the transmitted SNR selected to train the DNN. Moreover, for
a higher spectral efficiency, a larger training SNR is required to
successfully train the DNN. It can be clearly observed that only
about 30 epochs are needed to make the MSE loss converge
for all cases. Hence, the proposed DNN-aided detector can be
deployed rapidly in practical applications.

B. BER Performance

We further evaluate and compare the BER performance of
1D, 2D-1 and 2D-2 GOSM systems with different detection
schemes and spectral efficiencies. Figs. 5(a) and (b) compare
the BER versus transmitted SNR with spectral efficiencies of
4 and 5 bits/s/Hz, respectively. For a spectral efficiency of 4
bits/s/Hz as shown in Fig. 5(a), when using ZF-ML detection,
2D-1 GOSM performs slightly better than 1D GOSM while
2D-2 GOSM outperforms 2D-1 GOSM by an SNR gain of 2.2
dB. In contrast, when the DNN-aided detection with optimal
training SNRs is applied, all the three GOSM systems obtain
nearly the same BER performance as that applying joint ML
detection. More specifically, the required SNRs to reach BER
= 1073 are 126, 125.4 and 123.4 dB for 1D, 2D-1 and 2D-2
GOSM systems, respectively. Hence, a remarkable SNR gain
of 26 dB is achieved for all three GOSM systems compared
with that using the ZF-ML detection, which is mainly because
that the DNN-aided detection is able to eliminate noise ampli-
fication. Similarly, 1D and 2D-1 GOSM obtains comparable
BER performance, while 2D-2 GOSM obtains an SNR gain
of 2.6 dB in comparison to 2D-1 GOSM at BER = 10~3. For
a higher spectral efficiency of 5 bits/s/Hz as shown in Fig.
5(b), 2D-1 GOSM still slightly outperforms 1D GOSM when
adopting ZF-ML detection. However, 2D-1 GOSM achieves
an SNR gain of 1.7 dB over 1D GOSM when applying DNN-
aided detection, which suggests that the DNN-aided detection
is able to mitigate error propagation. In addition, an SNR gain
of 1.7 dB is also achieved by 2D-2 GOSM in comparison to
2D-1 GOSM. It can be clearly observed from Figs. 5(a) and
(b) that 2D-2 GOSM with DNN-aided detection achieves the
best BER performance among all the considered schemes.
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Fig. 5. BER vs. transmitted SNR for 1D, 2D-1 and 2D-2 GOSM systems
with a spectral efficiency of (a) 4 bits/s/Hz and (b) 5 bits/s/Hz.

C. Computational Complexity

Finally, we compare the computational complexity of three
detection schemes in terms of computation time. The simula-
tion was performed using JetBrains PyCharm with an AMD
Ryzen 5 3600 CPU, 16 GB RAM, and NVIDIA GeForce GTX
1660 SUPER GPU. Considering the fact that once the DNN-
aided detector has been trained, it can be used for signal
detection for a long time without further retraining, unless
the system parameters have been changed. Therefore, only
the complexity in the online detecting phase needs to be
considered, while the complexity of the offline training process
is not taken into consideration [8], [9]. Table IV compares the
computation time of three detection schemes with two spectral
efficiencies of 4 and 5 bits/s/Hz. For the 1D GOSM system
with a spectral efficiency of 4 bits/s/Hz, the computation time
of the DNN-aided detector is comparable as that of the ZF-
ML detector, which is much shorter than that of the joint
ML detector. For the 2D-1 and 2D-2 GOSM systems with
a spectral efficiency of 4 bits/s/Hz, the computation time of
the DNN-aided detector becomes shorter than that of the ZF-
ML detector. The same conclusion can also be found for 1D,
2D-1 and 2D-2 GOSM systems with a spectral efficiency of

TABLE IV
COMPARISON OF COMPUTATION TIME

Scheme 4 bits/s/Hz 5 bits/s/Hz
Joint ML 4.61 s 7.31s
1D ZF-ML 1.31s 1.51s
DNN 1.25s 1.50 s
Joint ML 4.03 s 6.13 s
2D-1 ZF-ML 1.77 s 195 s
DNN 1.39 s 1.66 s
Joint ML 7.04 s 10.51 s
2D-2 ZF-ML 2.78 s 294 s
DNN 1.63 s 1.81s

5 bits/s/Hz. Therefore, the proposed DNN-aided detector is
shown to be a low-complexity detector that can achieve near
optimal BER performance.

V. CONCLUSION

In this paper, we have proposed a novel 2D GOSM scheme
with deep learning-aided detection for MIMO-OWC systems.
Compared with conventional 1D GOSM mapping, the pro-
posed two 2D GOSM mapping schemes, namely 2D-1 and 2D-
2 GOSM mappings, can achieve higher spectral efficiencies.
Moreover, the proposed DNN-aided detection obtains compa-
rable BER performance as the optimal joint ML detection, but
with much reduced computational complexity. Our simulation
results show that 2D-2 GOSM with DNN-aided detection
achieves the best BER performance for two target spectral
efficiencies. Therefore, the proposed deep learning-aided 2D
GOSM scheme can be a promising candidate for high-speed
and low-complexity MIMO-OWC systems.
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