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Part I: Introduction
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Research Motivation of VLC
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1. The white light is safe for human eyes
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3. Energy conservation because of providing with functions of 
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5. Suitable for security communication
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Schematics of VLC system

TX：

⚫ electronics：LED driving circuit，signal processing (coding, modulation, equalization) 

⚫ optics：transmitter antenna

 RX：

⚫ optics：receiver antenna，PD

⚫ electronics：signal processing (decoding, demodulation, equalization)
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LED Based VLC

⚫ OOK

⚫ PPM

⚫ OFDM: ACO, 
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⚫ CAP
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⚫ Software 
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The key problem limiting the high-speed VLC system

 Blue LED 10dB bandwidth<15MHz
 RGB LED 10dB bandwidth<25MHz

1. LED bandwidth limitations 2. VLC system damage

 Inter-symbol interference
 LED nonlinearity

10dB 
Bandwidth

LED 
Nonlinearity

High spectral efficiency higher order 
modulation

Advanced post-equalization 
techniques

Solutions

• PAM、OFDM
• Single Carrier、CAP and so on

• ZF、DFE、RLS、DD-LMS
• CMMA、M-CMMA
• Volterra、Machine learning
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Advances of DSP in VLC systems
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Part II: Application of ML in VLC Systems

◆ 2.1 A blind post-equalization scheme of  mulit-CAP
◆ 2.2 A pre-distortion scheme of  mulit-CAP
◆ 2.3 Amplitude Jitter Compensation scheme of  PAM Systems
◆ 2.4 DBSCAN scheme of CAP (QAM) Systems
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Non-linearity of CAP VLC systems (1/4 of 2.1) 

Transfer curve of Multi-Band CAP
VLC system.

[1]:I. Stefan, H. Elgala, and H. Haas. “Study of dimming and LED nonlinearity for ACO-OFDM based 
VLC systems,” in Wireless Communications and Networking Conference (WCNC), 2012, pp. 990-994.
[2]: G. Stepniak, J. Siuzdak, P. Zwierko. “Compensation of a VLC Phosphorescent White LED 
Nonlinearity by Means of Volterra DFE”

Reasons for the non-linearity of the VLC system[1~2]：

◼ V-I model in LED (Current and Voltage);

◼ PIN photodetector; 

◼ Transmitter driving circuits and the amplifier. 

Constellation diagrams of 2 sub-band
after CMMA linear equalizer.
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Principle of  K-means Based Perception Decision (2/4 of 2.1)

a) b)

CAPD

a) Traditional decision principle.   b) K-means based perception decision.

c) Flowchart of K-means Based Perception Decision

c)
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Experiment of  K-means Based Perception Decision (3/4 of 2.1)
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◼ The 5-band CAP16 VLC system employing clustering algorithm-based perception decision.

◼ The transmitted spectra and the received spectra.

a)
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Experiment of  K-means Based Perception Decision (4/4 of 2.1)
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◼ The Q factor of each sub-band is 

improved by 1.6~2.5 dB

◼ Lower computational complexity than 
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Chongqing University of Posts and Telecommunications

Defect of Post-Equalization scheme (1/4 of 2.2)

The confused constellation 
points cannot be 
distinguished.

Transmitter Receiver
？

What/How can we do before 
transmission?
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Principle of pre-distortion scheme (2/4 of 2.2)  

Specific steps:  

1. Find the actual centroids by analyzing the statistical properties ( Training process);

2. Calculating  correct vector is obtained from the original constellation and the actual center point;

3. Send pre-distorted symbols (Transmission process)

Standard Constellation Points

Correction Vector  

Actual Center Point

Cluster Displacement Vector  

Pre-distorted Constellation PointsClustering Method
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Experiment of pre-distortion scheme (3/4 of 2.2)  
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Experimental results of pre-distortion scheme (4/4 of 2.2)  

Constellation diagrams of different sub-band after (a~e) CMMA linear equalizer; (f~j) k-means clustering algorithm 

results (different clusters are represented by different colors, red crosses in cluster is the cluster centers); (k~o) the 

displacement vector; (p~t) the final data corrected. (u~x) BER comparison of CMMA, CMMA+CAE
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Constellations of PAM-8 VLC 
systems with Amplitude jitter.

◼ Amplitude jitter affects the performance of the PAM systems

◼ Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

algorithm is suitable for clustering without geometric center
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Principle of DBSCAN algorithm

Background and Motivation of DBSCAN (1/3 of 2.3) 
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Principle of DBSCAN in PAM systems (2/3 of 2.3)
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◼ Amplitude-only signal extended to time-amplitude dimension;
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Experiment and results of DBSCAN in PAM (3/3 of 2.3)
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improved by 1.6 ~ 3.2 dB；
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DBSCAN in CAP systems (1/2 of 2.4)

◼ In-phase-quadrature 

(IQ) 2 dimensional 

space to the in-phase-

quadrature-time (IQT) 

3 dimensional space

◼ Euclidean distance to 

Density
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DBSCAN algorithm
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Experiment and results of DBSCAN in CAP (2/2 of 2.4)

With DBSCAN:

 Traditional scheme: well solve the situation when the
noise amplitude below 50% of Euclidean distance;

 DBSCAN scheme: noise jitter is as large as more than
70%;

 Q factor of the system with jitter improves by 3.5 dB.
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Part III: Application of NNs in VLC Systems
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Motivation and past research (1/3 of part 3.1)

Why need NNs?

◼ Increase capacity: higher order modulation over limited bandwidth;

◼ Trade off  of complexity and performance;

◼ Considering Linear and Non-Linear mutual damage in a model.

A review of NNs in Equalization?

◼ ANN, MLP, DNN and RNN in Equalization (review in 2010)

◼ ANN in Short-range fiber IM/DD Systems( ECOC 2016)

◼ ANN in VLC (JLT 2014)

◼ DNN, CNN, LSTM (2018~now)
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A LSTM equalizer in VLC (2/3 of part 3.1)

LSTM (State 1)

LSTM (State N)

Training Set
(Rx & Tx for training )

Calculate the loss 
(softmax cross entropy loss)

Minimized by Optimizer
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◼ a time-domain Long Short-Term Memory (LSTM) neural network based equalization scheme
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Experiment and results LSTM in PAM-8 (3/3 of part 3.1)
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equalizer
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EXNN equalizer in VLC (1/3 of part 3.2)

◼ Illustration of the EXNN signal recovery principle

Noise detection

Tx Training Data Rx Training Data

Training Process
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Tx Data
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EXNN equalizer in VLC (2/3 of part 3.2)

◼ EXNN structure and training process
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EXNN equalizer in VLC (3/3 of part 3.2)

◼ Signal extraction using (a) a sampling convolutional kernel and (b) a conventional convolutional kernel
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Patterns Quantization with Noise (1/1 of part 3.3)

◼ Patterns Quantization with Noise Using Gaussian Features (JLT2022)
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Part IV : Conclusions
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Migration of NNs in VLCs

32

NNs

⚫ ANN（2017* Fiber）

⚫ GK-DNN（2018）

⚫ AdaNN（2020）

⚫ AANN（2021）

⚫ …

⚫ CNN（2019）

⚫ VLCnet(2020)

⚫ TFCNN(2021)

⚫ …

⚫ LSTM(2019)

⚫ LSTM-cls(2019 * 

Fiber)

⚫ Bi-LSTM(2022)

⚫ …

⚫ TTHNet（2019）

⚫ TFNet（2020）

⚫ CNN-DE(2019)

DNN CNN RNN Othes
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Conclusions and recent researches
Now:

◼ It has been experimentally verified that machine learning-based equalization can improve 

the performance of VLC systems.

And the next：

◼ Extend the ML algorithms to higher order modulation.

◼ Compare different algorithms by experiment.

◼ Theoretically Analyze the potential of machine learning for VLC system performance 

improvement

◼ Consider algorithm implementation at the application level.
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Application requirements of VLC
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Thanks for your attention!
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