

Signal Processing Techniques based on Machine Learning for Visible Light Communications

Dr.LU Xingyu

Outline

1	Introduction
1	Introduction

- 2 Machine Learning in VLCs
- 3 Deep Learning in VLCs
- 4 Conclusions

Part I: Introduction

Research Motivation of VLC

- 1. The white light is safe for human eyes
- 2. No electromagnetic interference, applications in the electromagneticsensitive environment (airplane, hospital, etc)
- 3. Energy conservation because of providing with functions of illumination, communication and control positioning
- 4. Spectrum license free
- 5. Suitable for security communication

Schematics of VLC system

- optics: transmitter antenna
- □ RX:
 - optics: receiver antenna, PD
 - electronics: signal processing (decoding, demodulation, equalization)

LED Based VLC

Modulation

- OOK
- PPM
- OFDM: ACO, DFTS, 2FFT, PTS, SLM, PC
- CAP
- SC-FDE

Equalization

- Software equalization
- Hardware equalization

Multiplexing

- Frequency division: SCM
- Wave division: RGB
- Imaging VLCMIMO
- Non-imaging VLC MIMO

Material

- Micro-LED
- GaN-LED
- GaAlAs based blue light Narrow band detector
- LED array
- Detector array

The key problem limiting the high-speed VLC system

Solutions

High spectral efficiency higher order modulation

- PAM、OFDM
- Single Carrier、CAP and so on

Advanced post-equalization techniques

- ZF、DFE、RLS、DD-LMS
- CMMA、M-CMMA
- Volterra \ Machine learning

Advances of DSP in VLC systems

Part II: Application of ML in VLC Systems

- ◆ 2.1 A blind post-equalization scheme of mulit-CAP
- 2.2 A pre-distortion scheme of mulit-CAP
- ◆ 2.3 Amplitude Jitter Compensation scheme of PAM Systems
- ◆ 2.4 DBSCAN scheme of CAP (QAM) Systems

Non-linearity of CAP VLC systems (1/4 of 2.1)

Transfer curve of Multi-Band **CAP** VLC system.

Reasons for the non-linearity of the VLC system[1~2]:

- V-I model in LED (Current and Voltage);
- PIN photodetector;
- Transmitter driving circuits and the amplifier.

Constellation diagrams of 2 sub-band after CMMA linear equalizer.

[1]:I. Stefan, H. Elgala, and H. Haas. "Study of dimming and LED nonlinearity for ACO-OFDM based VLC systems," in Wireless Communications and Networking Conference (WCNC), 2012, pp. 990-994. [2]: G. Stepniak, J. Siuzdak, P. Zwierko. "Compensation of a VLC Phosphorescent White LED Nonlinearity by Means of Volterra DFE"

Principle of K-means Based Perception Decision (2/4 of 2.1)

Standard constellation points

c) Flowchart of K-means Based Perception Decision

Experiment of K-means Based Perception Decision (3/4 of 2.1)

- b) the transmitted spectra;
- c) the received spectra.

- a) The experimental setup
- The 5-band CAP16 VLC system employing clustering algorithm-based perception decision.
- The transmitted spectra and the received spectra.

Experiment of K-means Based Perception Decision (4/4 of 2.1)

Compensation Method	M-CMMA(CAP16)	Volterra Equalizer(2- Order)	Volterra Equalizer(3- Order)	CAPD
Multiplier	8N+16	$2N^2$	3N ³ +2N ²	I*(L ² /2)
Adder	8N+20	N ² -1	N^3+N^2-2	I*L
Comparator	6	0	0	I*32
Iterations	all Rx data	all Rx data	all Rx data	L=2000~3000
Data aided	No	No	No	No

- The Q factor of each sub-band is improved by 1.6~2.5 dB
- Lower computational complexity than Volterra equalizers

Defect of Post-Equalization scheme (1/4 of 2.2)

The confused constellation points cannot be distinguished.

What/How can we do before transmission?

Principle of pre-distortion scheme (2/4 of 2.2)

Specific steps:

- 1. Find the actual centroids by analyzing the statistical properties (Training process);
- 2. Calculating **correct vector** is obtained from the original constellation and the actual center point;
- 3. Send pre-distorted symbols (Transmission process)

Experiment of pre-distortion scheme (3/4 of 2.2)

- Finding Constellation Centers By K-means algorithm;
- Pre-distortion with training process

Experimental results of pre-distortion scheme (4/4 of 2.2)

Constellation diagrams of different sub-band after (a \sim e) CMMA linear equalizer; (f \sim j) k-means clustering algorithm results (different clusters are represented by different colors, red crosses in cluster is the cluster centers); (k \sim o) the displacement vector; (p \sim t) the final data corrected. (u \sim x) BER comparison of CMMA, CMMA+CAE

Background and Motivation of DBSCAN (1/3 of 2.3)

Constellations of PAM-8 VLC systems with Amplitude jitter.

- Amplitude jitter affects the performance of the PAM systems
- Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
 algorithm is suitable for clustering without geometric center

Principle of DBSCAN in PAM systems (2/3 of 2.3)

- Amplitude-only signal extended to time-amplitude dimension;
- Using density gaps to distinguish different symbols by DBSCAN algorithm.

Experiment and results of DBSCAN in PAM (3/3 of 2.3)

DBSCAN in CAP systems (1/2 of 2.4)

- In-phase-quadrature (IQ) 2 dimensional space to the in-phase-quadrature-time (IQT) 3 dimensional space
- Euclidean distance to Density
- Post-equalization scheme based on DBSCAN algorithm

Experiment and results of DBSCAN in CAP (2/2 of 2.4)

Part III: Application of NNs in VLC Systems

Motivation and past research (1/3 of part 3.1)

Why need NNs?

- Increase capacity: higher order modulation over limited bandwidth;
- Trade off of complexity and performance;
- Considering Linear and Non-Linear mutual damage in a model.

A review of NNs in Equalization?

- ANN, MLP, DNN and RNN in Equalization (review in 2010)
- ANN in Short-range fiber IM/DD Systems(ECOC 2016)
- ANN in VLC (JLT 2014)
- DNN, CNN, LSTM (2018~now)

A LSTM equalizer in VLC (2/3 of part 3.1)

a time-domain Long Short-Term Memory (LSTM) neural network based equalization scheme

Experiment and results LSTM in PAM-8 (3/3 of part 3.1)

S-MCMMA - LSTM 0.01 (d) @3.8E-3 1E-3 BER(dB) (**d**) **(b)** (a) (c) 250 300 350 450 400 Bandwidth(MHz)

■ Proving up to 10~100x BER performance improvement than traditional S-MCMMA equalizer

EXNN equalizer in VLC (1/3 of part 3.2)

■ Illustration of the EXNN signal recovery principle

EXNN equalizer in VLC (2/3 of part 3.2)

EXNN structure and training process

EXNN equalizer in VLC (3/3 of part 3.2)

■ Signal extraction using (a) a sampling convolutional kernel and (b) a conventional convolutional kernel

Patterns Quantization with Noise (1/1 of part 3.3)

■ Patterns Quantization with Noise Using Gaussian Features (JLT2022)

Part IV: Conclusions

Migration of NNs in VLCs

Conclusions and recent researches

Now:

■ It has been experimentally verified that machine learning-based equalization can improve the performance of VLC systems.

And the next:

- Extend the ML algorithms to higher order modulation.
- Compare different algorithms by experiment.
- Theoretically Analyze the potential of machine learning for VLC system performance improvement
- Consider algorithm implementation at the application level.

Application requirements of VLC

Thanks for your attention!